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Single-cell analysis reveals divergent developmental trajectories and regulatory networks in
*Plasmodium falciparum* lab strains and field isolates
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ABSTRACT
Adaptation of *Plasmodium falciparum* to distinct environments, such as laboratory culture versus

the dynamic human host, leads to significant changes in parasite development and fate determina-
tion, but the underlying dynamic transcriptional programs and regulatory networks governing these
processes remain poorly understood. To elucidate these differences, we employed single-cell RNA
sequencing to dissect and compare the dynamic transcriptional programs and inferred regulatory net-
works controlling stage transitions in laboratory-adapted strains and field isolates. We analyzed a
comprehensive dataset of over 45,000 single cells from both sources, reconstructing developmental
trajectories, characterizing gene expression dynamics along pseudotime, identifying co-expressed gene
modules, and inferring candidate regulators exhibiting transient expression patterns. Our analysis
revealed marked differences in cellular composition and extensive differential gene expression between
lab and field parasites, even within shared life cycle stages. Trajectory inference highlighted divergent
developmental paths, most notably an extended sexual development program in field isolates that pro-
gresses to late-stage gametocytes not typically observed in standard laboratory culture. Furthermore,
analysis of gene modules and transiently expressed regulators indicated substantial rewiring of the
regulatory networks controlling stage transitions, suggesting differences in the timing and complexity
of regulatory events, particularly a potentially more complex regulatory landscape governing gameto-
cytogenesis in field parasites. These findings provide a high-resolution, dynamic perspective on how
adaptation shapes *Plasmodium falciparum* development and identify key transcriptional regulators
potentially mediating host-specific developmental control.
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1. INTRODUCTION
Malaria, a disease caused by the eukaryotic para-

site Plasmodium falciparum, remains a significant global
health burden. The parasite’s complex life cycle involves
distinct developmental stages within both mosquito vec-
tors and human hosts. Within human red blood cells,
P. falciparum undergoes rapid asexual multiplication,
which is responsible for the clinical manifestations of
malaria. A crucial aspect of the parasite’s life cycle is
its ability to differentiate from the asexual proliferative
stage into sexual precursor stages called gametocytes.
These gametocytes are essential for transmission to the
mosquito vector, making the decision to commit to sex-
ual development and the subsequent maturation pro-
cess critical determinants of parasite fitness and disease
spread.

Precise control over the timing and regulation of
these developmental stage transitions is paramount for
parasite survival and transmission success. However,
studying these dynamic processes presents significant
challenges. P. falciparum populations are inherently
asynchronous, comprising cells at various developmen-
tal stages simultaneously, making bulk analyses inher-
ently limited. Furthermore, the parasite’s biology is
profoundly influenced by its environment. Laboratory-
adapted strains, maintained under stable in vitro cul-
ture conditions, often diverge significantly in their de-
velopmental characteristics and gene expression pat-
terns compared to field isolates circulating in diverse
human populations, which are exposed to varying host
immune responses, drug pressures, and nutrient avail-
ability. While it is recognized that adaptation to these
distinct environments leads to changes in parasite devel-
opment and fate determination, the underlying dynamic
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transcriptional programs and the regulatory networks
that govern these differences at the single-cell level are
not well understood. Resolving the heterogeneity within
parasite populations and capturing the continuous pro-
gression through developmental stages requires high-
resolution approaches capable of analyzing individual
cells.
Single-cell RNA sequencing (scRNA-seq) has emerged

as a transformative technology for dissecting complex
biological systems, particularly those involving dynamic
processes like differentiation and development in hetero-
geneous cell populations. (Flores et al. 2021; Patel et al.
2024) By providing transcriptome-wide data from in-
dividual cells, scRNA-seq enables the reconstruction of
developmental trajectories and the detailed characteri-
zation of gene expression dynamics along these inferred
paths, often referred to as pseudotime. (Flores et al.
2021; Patel et al. 2024)
In this study, we leveraged the power of scRNA-seq

to provide a high-resolution, dynamic perspective on P.
falciparum development and to compare the transcrip-
tional landscapes and inferred regulatory networks be-
tween laboratory-adapted strains and field isolates (Li
2018; Zitnik et al. 2024). We analyzed a comprehensive
dataset comprising over 45,000 single cells originating
from both sources. To dissect the differences shaped by
laboratory adaptation versus natural in vivo conditions,
we employed advanced computational methods. These
methods allowed us to reconstruct the developmental
trajectories of the parasites, characterize the dynamic
changes in gene expression along pseudotime, identify
modules of co-expressed genes representing coordinated
biological processes (Zitnik et al. 2024), and infer can-
didate regulatory factors exhibiting transient expression
patterns associated with stage transitions (Li 2018). We
ensured the robustness of our findings through rigorous
data quality control, statistical analysis, and compara-
tive examination across multiple levels of biological or-
ganization, from overall cellular composition and differ-
ential gene expression within stages to the fine-grained
dynamics of gene expression and inferred regulatory in-
teractions along the developmental paths.
Our analysis revealed striking differences in cellular

composition and extensive differential gene expression
between lab and field parasites, even within nominally
shared life cycle stages. Trajectory inference highlighted
significant divergences in developmental paths, most no-
tably demonstrating a more pronounced and extended
sexual development program in field isolates that pro-
gresses to late-stage gametocytes, which are typically
absent or rare in standard laboratory cultures (Cao et al.
2016). Furthermore, by analyzing gene co-expression

modules and identifying candidate transiently expressed
regulators, we found evidence for substantial rewiring
of the regulatory networks controlling stage transitions
(Ditz et al. 2023). These findings suggest differences
in the timing, complexity, and key players involved in
regulatory events, particularly indicating a potentially
more complex regulatory landscape governing gameto-
cytogenesis in field parasites (Cao et al. 2016).
Collectively, our results provide a detailed, dynamic

perspective on how adaptation shapes P. falciparum de-
velopment and pinpoint key transcriptional regulators
that may mediate host-specific developmental control,
offering valuable insights into parasite biology and iden-
tifying potential targets for future interventions (Cao
et al. 2016; Ditz et al. 2023).

2. METHODS
Here we describe the experimental data and the

computational methods employed to analyze single-
cell RNA sequencing data from Plasmodium falciparum
laboratory-adapted strains and field isolates. The goal
was to reconstruct and compare developmental trajecto-
ries, characterize gene expression dynamics, identify co-
expressed gene modules, and infer candidate transcrip-
tional regulators controlling stage transitions, thereby
providing a dynamic, high-resolution view of differences
shaped by adaptation.

2.1. Data Source and Initial Processing
The dataset analyzed in this study consists of single-

cell RNA sequencing data from P. falciparum. The
raw input data were provided as a gene expression ma-
trix and associated cell metadata. The gene expression
matrix, provided in ‘gene_expression.csv‘, contained
normalized expression values for genes across individ-
ual cells. The cell metadata, provided in ‘labels_csv‘,
included crucial annotations for each cell, such as a
unique cell identifier (‘CELL_ID‘), assigned life cycle
stage (e.g., Ring, Trophozoite, Schizont, Gametocyte)
(Motta et al. 2024), the parasite strain, and the source
(laboratory-adapted or field isolate), along with spe-
cific identifiers for field isolates (MSC1, MSC3, MSC13,
MSC14) and days in culture for laboratory strains.
Data loading was performed using standard bioinfor-

matics libraries (e.g., in Python or R). The gene expres-
sion matrix was ingested and subsequently merged with
the cell metadata based on the common ‘CELL_ID‘.
For compatibility with common single-cell analysis

workflows, the expression matrix was transposed such
that rows represented individual cells and columns rep-
resented genes (Riffle et al. 2025).

2.2. Quality Control and Filtering
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Initial quality control steps were performed to ensure
the reliability of the single-cell data. Genes with mini-
mal expression across the entire dataset were removed;
specifically, genes detected in fewer than 3 cells or ex-
hibiting zero total expression counts were filtered out
(Dajani et al. 2025; Dandala et al. 2025).
While the provided data was pre-processed, standard

cell-level quality metrics were assessed, including the to-
tal number of detected genes per cell and the total nor-
malized expression per cell (Dajani et al. 2025; Dandala
et al. 2025).
Cells that presented as extreme outliers in these distri-

butions were considered for potential exclusion, though
primary reliance was placed on the provided metadata
for cell quality status (Dajani et al. 2025; Dandala et al.
2025). The sparsity of the expression matrix (percent-
age of zero values) was also calculated to understand the
nature of the single-cell data.

2.3. Normalization and Feature Selection
The provided ”normalized expression value” was

treated as the primary expression metric. Assuming
these values represented library-size corrected counts,
a log-transformation (specifically, loge(x+1) or ‘log1p‘)
was applied to the expression matrix. This transfor-
mation is standard practice in scRNA-seq analysis to
stabilize variance across the range of expression values
and render the data distribution more suitable for linear
dimensionality reduction techniques. To reduce compu-
tational complexity and focus on biologically relevant
variation, highly variable genes (HVGs) were identified
across all cells. These genes, exhibiting significant vari-
ance in expression relative to their mean expression, are
typically more informative for distinguishing cell states.
The identified HVGs were then used for subsequent di-
mensionality reduction and downstream analyses.

2.4. Dimensionality Reduction and Visualization
Principal Component Analysis (PCA) was applied to

the scaled expression matrix of the selected HVGs (Ali
et al. 2017). PCA identifies the principal components
(PCs) that capture the maximum variance in the dataset
(Ali et al. 2017). The number of PCs to retain for subse-
quent steps was determined by examining an elbow plot
of the explained variance per PC, selecting the point
where the gain in explained variance plateaus. To visu-
alize the cellular landscape in two dimensions, Uniform
Manifold Approximation and Projection (UMAP) was
applied to the selected PCs. UMAP is a non-linear di-
mensionality reduction technique that aims to preserve
local and global relationships between cells. UMAP
plots were generated and colored by various metadata

attributes, including the assigned life cycle stage, source
(lab vs. field), specific parasite strain or field isolate
identifier, and days in culture. This visualization facil-
itated the assessment of cellular heterogeneity, the sep-
aration of distinct cell populations, potential batch ef-
fects, and the overall structure of the dataset.

2.5. Cell Stage Annotation
The primary annotation for cell identity relied on the

”life cycle stage” column provided in the ‘labels_csv‘
metadata. These labels represent the developmental
stage assigned to each cell based on prior information or
sorting. To verify the consistency and accuracy of these
annotations within the scRNA-seq data, the expression
patterns of well-established stage-specific marker genes
for *P. falciparum* were examined and visualized on
the UMAP embeddings. This step confirmed that cells
clustered broadly according to their assigned biological
stage.

2.6. Differential Gene Expression Analysis
To identify transcriptional differences between

laboratory-adapted strains and field isolates, differ-
ential gene expression (DGE) analysis was performed.
Comparisons were conducted for each major life cycle
stage (e.g., Ring, Trophozoite, Schizont, and poten-
tially early/late Gametocytes if sufficient numbers were
present and distinguishable) that was represented in
both lab and field datasets. For each stage, gene ex-
pression levels in cells from lab strains were statistically
compared to those from field isolates. Statistical tests
robust to the characteristics of single-cell data, such as
the Wilcoxon rank-sum test or methods based on neg-
ative binomial distributions (e.g., using tools designed
for scRNA-seq DGE), were employed. P-values were
adjusted for multiple comparisons using the Benjamini-
Hochberg method to control the false discovery rate
(FDR), with a threshold (e.g., FDR < 0.05) used to de-
fine statistical significance. Additionally, stage-specific
marker genes were identified separately within the lab
and field datasets by comparing cells of a given stage
against all other cells within the same source group
(Birkholtz et al. 2006).

2.7. Developmental Trajectory Inference and
Pseudotime Assignment

To reconstruct the continuous progression of P. falci-
parum through its developmental cycle and capture the
dynamics of stage transitions, developmental trajectory
inference was performed. Cells identified as belonging to
the asexual intraerythrocytic cycle (Ring, Trophozoite,
Schizont) were subsetted for asexual trajectory recon-
struction. Similarly, if a sufficient number and diversity
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of gametocyte stages were present, a separate trajec-
tory focusing on sexual commitment and development
was inferred. Trajectories were reconstructed indepen-
dently for the combined laboratory strains and the com-
bined field isolates using a suitable trajectory inference
algorithm (e.g., Monocle 3, Slingshot, or graph-based
methods like PAGA implemented in Scanpy). The in-
ferred trajectories represent a principal path through the
high-dimensional gene expression space, ordered by an
abstract measure of progress called pseudotime. The
starting point (root) of the trajectories was set based
on biological knowledge, typically anchoring the asexual
cycle at the Ring stage. Each cell was assigned a pseu-
dotime value reflecting its position along the inferred
path.

2.8. Comparative Trajectory Analysis and
Pseudotemporal Dynamics

The inferred developmental trajectories were com-
pared between laboratory-adapted strains and field iso-
lates at multiple levels (Zhou et al. 2024; Hutton &
Meyer 2025; Zhang et al. 2025). The overall topology
of the trajectories, including linearity, branching points
(such as the putative branch towards sexual develop-
ment), and the relative density of cells along different
paths, was compared (Zhou et al. 2024; Zhang et al.
2025). Graph-based approaches (e.g., comparing PAGA
graphs) were used where appropriate to quantitatively
assess differences in trajectory structure (Zhang et al.
2025).
A key aspect of the comparative analysis involved

examining the dynamics of gene expression along the
pseudotime axis (Chen et al. 2025,?). For genes iden-
tified as differentially expressed or as stage markers,
their expression levels were modeled as a function of
pseudotime for both lab and field trajectories (Chen
et al. 2025,?). Gene expression profiles along pseudo-
time were smoothed (e.g., using Generalized Additive
Models (GAMs) or LOESS regression) to capture under-
lying trends. These smoothed dynamics were then com-
pared between conditions to identify differences in the
timing of gene activation or repression, the magnitude
of expression changes during transitions, and the over-
all shape of the expression profile (Chen et al. 2025,?).
This analysis allowed for a detailed comparison of how
transcriptional programs unfold dynamically in different
adaptive contexts (Chen et al. 2025,?).

2.9. Identification and Characterization of Gene
Modules

Modules of co-expressed genes were identified along
the inferred pseudotime trajectories for both labora-
tory and field isolates. This was achieved by clustering

genes based on the similarity of their smoothed pseu-
dotemporal expression patterns. Methods such as hier-
archical clustering or k-means were applied to the fit-
ted gene expression profiles along pseudotime. Alter-
natively, graph-based clustering methods on gene cor-
relation networks derived from pseudotime-ordered cells
were used. Each identified module represents a set of
genes with coordinated expression dynamics, potentially
reflecting shared regulatory control or involvement in a
common biological process. For each module, functional
enrichment analysis was performed using resources like
Gene Ontology (GO) and KEGG pathways, leveraging
annotations available in databases such as PlasmoDB.
This step aimed to assign biological meaning to the
co-expressed gene sets. The composition of gene mod-
ules (which genes belong to which module) and their
pseudotemporal expression profiles were then compared
between lab and field isolates to identify conserved or
condition-specific modules and differences in their tim-
ing or prominence.

2.10. Identification of Candidate Transient Regulators
A specific analysis was conducted to identify candi-

date transcriptional regulators hypothesized to exhibit
transient expression patterns associated with develop-
mental transitions, as suggested by their potential role
in initiating or coordinating downstream transcriptional
changes. This approach focused on genes with rela-
tively low overall expression but showing significant,
transient increases in expression immediately preceding
major transcriptional shifts or stage transitions.
First, genes were filtered based on their mean expres-

sion across cells within a relevant trajectory (e.g., asex-
ual cycle), retaining those with mean expression below
a defined threshold (e.g., the 25th percentile of all gene
means) to focus on genes that are not constitutively
highly expressed.
For these low-expression genes, their smoothed expres-

sion profiles along pseudotime were analyzed for signif-
icant peaks. A peak was defined as a local maximum
in the smoothed profile where the expression level ex-
ceeded a threshold relative to the gene’s baseline expres-
sion within that trajectory (e.g., a fold change greater
than 2 relative to the gene’s median expression).
Candidate regulators were prioritized if their tran-

sient expression peaks occurred immediately prior to
known life cycle stage transitions (as defined by cell la-
bels and marker gene expression) or the activation of
major gene modules identified in the previous step (Gr-
ishechkin et al. 2025).
Functional annotations from PlasmoDB and other rel-

evant databases were used to filter candidates for known
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or predicted regulatory functions (e.g., transcription fac-
tors, kinases, phosphatases, chromatin modifiers).
The sets of identified candidate regulators and the

timing of their transient expression were compared be-
tween lab and field isolates to highlight potential differ-
ences in regulatory control.

2.11. Inference of Putative Regulatory Interactions
To gain insight into the potential regulatory networks,

a simplified approach was used to infer putative down-
stream targets of the identified candidate transient reg-
ulators. For each high-confidence candidate regulator
exhibiting a transient peak in expression, the expression
dynamics of other genes were examined in the pseudo-
time window immediately following the regulator’s peak.
Genes whose expression significantly changed (either up-
regulated or downregulated) in the period immediately
after the regulator’s peak were considered putative tar-
gets. This inference was based on the principle that
a regulator’s transient activation often precedes changes
in the expression of its target genes (Kommu et al. 2024;
Hegde et al. 2025).
Statistical methods, such as correlation analysis con-

sidering a potential time lag or differential expression
testing between cells before and after the regulator’s
peak within a defined pseudotime window, were em-
ployed to identify these putative target genes (Kommu
et al. 2024; Hegde et al. 2025).
By comparing the sets of inferred targets for con-

served and condition-specific regulators between lab and
field conditions, potential rewiring of regulatory net-
works controlling specific developmental transitions was
assessed (Kommu et al. 2024; Hegde et al. 2025).

2.12. Statistical Analysis and Reproducibility
All statistical analyses, including differential expres-

sion testing, trajectory inference, module detection, and
regulator identification, were performed with attention
to statistical rigor. Multiple testing correction (e.g.,
Benjamini-Hochberg FDR) was applied where appropri-
ate to control the rate of false positives (Sarkar & Tang
2021; He et al. 2024; Timans et al. 2025). A significance
level, typically FDR < 0.05 or FDR < 0.01, was used
to determine statistical significance. All computational
analyses were performed in a reproducible manner, with
code and parameters used for each step documented.

3. RESULTS
3.1. Dataset overview and quality control

We analyzed a single-cell RNA sequencing dataset
comprising 45,691 individual Plasmodium falciparum
cells. Following initial processing and quality control

steps, which included filtering genes detected in fewer
than three cells, the dataset retained expression profiles
for 5,274 genes. These cells originated from two dis-
tinct sources: laboratory-adapted strains and field iso-
lates. The majority of cells (37,624, or 82.3%) were de-
rived from laboratory cultures, while 8,067 cells (17.7%)
were obtained from field isolates from four asymp-
tomatic patients in Mali. After normalization and log-
transformation as described in the Methods, the re-
sulting gene expression matrix exhibited a sparsity of
80.25%, consistent with the nature of single-cell tran-
scriptomic data. To inform subsequent dimensionality
reduction, we examined the variance explained by prin-
cipal components (PCs), as shown in Figure 1.

Figure 1. Variance ratio explained by principal components
(PCs) ranked by importance. This plot illustrates the pro-
portion of total variance captured by each PC, informing the
selection of components used for subsequent dimensionality
reduction.

A comparison of basic dataset characteristics revealed
notable differences between the lab and field populations
(Table 1). Cells from laboratory strains generally dis-
played a higher median number of detected genes per
cell (954 vs. 802) and a higher median total normalized
expression per cell (2093.79 vs. 1813.51) compared to
field isolates. These differences might reflect variations
in parasite health, transcriptional activity, or RNA in-
tegrity influenced by the distinct environments of labo-
ratory culture versus the human host.
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A critical divergence between the two datasets was ob-
served in the distribution of cells across the parasite’s life
cycle stages (Table 2). The laboratory dataset provided
a comprehensive representation of the asexual intraery-
throcytic development cycle (IDC), encompassing early
ring, late ring, early trophozoite, late trophozoite, early
schizont, and late schizont stages, alongside developing
and mature male and female gametocytes. In stark con-
trast, the field isolates predominantly consisted of sex-
ual stages (gametocytes), with asexual stages limited to
late rings and early trophozoites. Early ring, early sch-
izont, and late schizont stages were entirely absent from
the field samples. Furthermore, very late-stage gameto-
cytes, specifically annotated as ’LE’ (likely representing
stage V gametocytes), were exclusively identified within
the field isolate population. This striking difference in
stage composition highlights that standard laboratory
culture conditions, while supporting the asexual cycle
and early sexual development, do not fully recapitu-
late the conditions necessary for progression to the most
mature gametocyte stages observed in the human host.
This observation underscores the importance of analyz-
ing field isolates to capture the full spectrum of parasite
development relevant to transmission.

3.2. The transcriptional landscape of lab and field
parasites

To visualize the global transcriptional landscape and
assess the relationships between cells, we performed di-
mensionality reduction using UMAP on the expression
data of 2,000 highly variable genes. As shown in Fig-
ure 2, when the UMAP embedding was colored by the
assigned life cycle stage, cells organized into a struc-
ture that faithfully represents the known progression of
the P. falciparum life cycle. The asexual IDC formed a
large, semi-circular arrangement, beginning with rings,
transitioning through trophozoites, and culminating in
schizonts. Sexual stages branched off from the asexual
cycle, forming distinct clusters for developing, female,
and male gametocytes. This spatial arrangement vali-
dates the quality of the single-cell data and the biological
relevance of the provided stage annotations.
Coloring the same UMAP embedding by the source

of the cells (lab vs. field), as presented in Figure 3, re-
vealed both shared and distinct regions occupied by the
two populations. As anticipated from the cell count dis-
tribution described previously, areas corresponding to
early asexual stages (early rings, schizonts) were exclu-
sively populated by laboratory cells. Conversely, the
clusters representing late-stage (LE) male and female
gametocytes were occupied solely by field isolates.

Figure 2. UMAP projection of single-cell P. falciparum
transcriptomes, colored by annotated life cycle stage. The
visualization reveals distinct clusters and a continuous struc-
ture reflecting the asexual intraerythrocytic development cy-
cle (IDC) and separate sexual stages, confirming the quality
of the data and stage annotations.

Figure 3. UMAP embedding of single cells colored by
source (Field or Lab). The plot shows both shared cell pop-
ulations and distinct clusters unique to either lab strains or
field isolates, highlighting differences in dataset composition.
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Importantly, even within stages present in both
datasets (late rings, early trophozoites, develop-
ing/mature gametocytes), the distributions of lab and
field cells, while overlapping, often occupied slightly dif-
ferent spaces within the clusters. Figure 4, which shows
the UMAP colored by individual sources, further illus-
trates this. This visual separation suggested that be-
yond the differences in stage representation, there were
likely underlying transcriptional distinctions between
lab and field parasites even within nominally equivalent
developmental stages.

Figure 4. UMAP embedding of P. falciparum single-cell
transcriptomes colored by source. Cells from laboratory
strains (Lab) and individual field isolates (MSC1, MSC3,
MSC13, MSC14) are shown. The plot reveals that while
cells from both sources co-cluster within shared developmen-
tal stages, distinct regions are exclusively populated by either
lab or field cells, highlighting differences in dataset compo-
sition.

3.3. Stage-specific differential gene expression between
lab and field isolates

To quantify the transcriptional differences hinted at
by the UMAP visualization, we performed differential
gene expression (DGE) analysis comparing laboratory-
adapted strains and field isolates within four major life
cycle stages where both sources were represented: late
ring, early trophozoite, female gametocyte, and male
gametocyte.
In the late ring stage, comparing 428 field cells to

5,438 lab cells revealed a substantial number of differ-
entially expressed genes (DEGs). The volcano plot in
Figure 5 shows a strong asymmetry, with a large pro-
portion of genes significantly upregulated in field iso-

lates compared to lab strains. For example, genes like
PF3D7_1372200 and PF3D7_0831800 showed signifi-
cant upregulation in field isolates with log-fold changes
(LFCs) of 4.87 and 2.33, respectively (FDR < 0.05).
This widespread transcriptional divergence at the late
ring stage indicates that field parasites are already on a
distinct transcriptional path early in their IDC.

Figure 5. Volcano plot showing differential gene expression
(DGE) between field isolates and lab strains at the late ring
stage. Log2 fold change (Field vs. Lab) is plotted against
− log10 (adjusted P-value). Red points indicate genes signifi-
cantly upregulated in field isolates, blue points indicate genes
significantly downregulated (upregulated in lab), and gray
points are not significant. The plot demonstrates a strong
transcriptional divergence at this stage, with a notable skew
towards upregulation in field isolates.

The transcriptional differences persisted and were
even more pronounced in the early trophozoite stage
(122 field vs. 9,635 lab cells). As illustrated in the vol-
cano plot in Figure 6, a large number of genes were again
significantly differentially expressed, with a strong bias
towards upregulation in field isolates. Genes such as
PF3D7_1372200 (LFC = 10.44) and PF3D7_1001500
(LFC = 5.39) were among the most highly upregulated
in field parasites. These substantial differences suggest
that the primary growth phase of field isolates is char-
acterized by a unique transcriptional program, poten-
tially influenced by factors encountered in the human
host environment that are absent in standard labora-
tory culture.
The most striking transcriptional divergence was ob-

served within the sexual stages (gametocytes). In fe-
male gametocytes (1,656 field vs. 3,903 lab cells), thou-
sands of genes were found to be differentially expressed,
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Figure 6. Volcano plot showing differential gene expres-
sion between field isolates and laboratory strains in the early
trophozoite stage. Each point represents a gene, colored by
significance and direction of change (red: significantly up-
regulated in field, blue: significantly downregulated in field).
The plot reveals a strong skew towards gene upregulation in
field parasites, highlighting transcriptional differences at this
stage.

as depicted in Figure 7. While many genes were upregu-
lated in both directions, the sheer number of significant
DEGs highlighted a profound difference in the transcrip-
tional state of female gametocytes from field isolates
compared to laboratory strains. Top upregulated genes
in field female gametocytes included PF3D7_1423600
(LFC=5.72) and, intriguingly, the canonical male ga-
metocyte surface protein gene PF3D7_1031000 (Pfs25,
LFC=1.22). The upregulation of a male marker in
cells annotated as female gametocytes from field isolates
could potentially indicate less stringent sexual lineage
separation in the field, a different transcriptional state
of field female gametocytes that includes expression of
some male-associated genes, or subtle differences in cell
sorting/annotation between the two sources that reflect
in vivo heterogeneity.
Similarly, male gametocytes (3,364 field vs. 1,964

lab cells) exhibited extensive transcriptional differences,
as seen in Figure 8, with genes like PF3D7_0205000
(LFC=2.46) and PF3D7_1201600 (LFC=2.67) showing
significant upregulation in field isolates. The widespread
and large-magnitude differential expression in both male
and female gametocytes underscores that the sexual de-
velopment program proceeds fundamentally differently
in the human host environment compared to laboratory
culture.

Figure 7. Volcano plot illustrating differential gene expres-
sion (DGE) between field and lab isolates of Plasmodium fal-
ciparum female gametocytes. The x-axis represents the Log2
fold change (Field vs. Lab), and the y-axis shows the -Log10
adjusted P-value. Points represent individual genes, colored
by significance (adjusted P-value < 0.05) and direction of
change (red: upregulated in field, blue: downregulated in
field/upregulated in lab, gray: not significant). The plot re-
veals a large number of significantly differentially expressed
genes, indicating profound transcriptional differences in fe-
male gametocytes between in vivo and in vitro conditions.

Figure 8. Differential gene expression analysis of male ga-
metocytes from field isolates compared to lab strains. Vol-
cano plot shows log2 fold change (Field vs. Lab) versus -
log10 adjusted p-value. Numerous genes are significantly
differentially expressed, revealing substantial transcriptional
divergence in male gametocytes between these two sources.
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3.4. Developmental trajectories reveal altered
progression dynamics

To gain a dynamic perspective on these transcriptional
differences and understand how stage transitions unfold,
we performed developmental trajectory inference using
PAGA and diffusion pseudotime.
For the asexual development in laboratory strains,

we successfully reconstructed a complete, cyclical tra-
jectory representing the IDC. As shown in the UMAP
embedding (Figure 9), anchored at the ’early ring’ stage
as the root, the pseudotime progression accurately cap-
tured the known sequence of development from rings
through trophozoites to schizonts.

Figure 9. Two-dimensional embedding of single cells from
laboratory-adapted Plasmodium falciparum asexual stages.
Cells are colored by annotated life cycle stage (left) and
inferred pseudotime (right). The cyclical arrangement of
stages and the smooth progression of pseudotime demon-
strate the accurate reconstruction of the intraerythrocytic
developmental cycle trajectory in laboratory strains.

The PAGA graph (Figure 10 and Figure 11) confirmed
strong connectivity and smooth transitions between con-
secutive asexual stages, reflecting the continuous nature
of this cycle in culture.
For the field isolates, due to the limited stage represen-

tation (as detailed in Table 2), the asexual trajectory re-
construction was necessarily incomplete, encompassing
only the late ring and early trophozoite stages present
in the dataset (Figure 12). While this segment showed
the expected pseudotemporal progression within these
stages (Figure 13), the absence of early rings and sch-
izonts precluded a full comparison of the entire asexual
cycle’s dynamics and duration between lab and field.
The sexual development trajectories revealed even

more pronounced differences. In laboratory strains, the
trajectory, rooted at ’gametocyte (developing)’, showed
a clear bifurcation into distinct mature male and female
gametocyte lineages (Figure 14 and Figure 15), consis-
tent with the known sexual differentiation pathway in
culture.
In contrast, the trajectory inferred for field isolates,

visualized using PAGA (Figure 16 and Figure 17) and a

Figure 10. PAGA graph showing the reconstructed asex-
ual life cycle trajectory for laboratory-adapted *Plasmodium
falciparum* strains. Nodes represent parasite stages, and
edge thickness indicates inferred connectivity strength be-
tween stages. The left panel displays stage labels, and the
right panel colors the nodes by diffusion pseudotime. The
cyclical structure and strong connectivity between consecu-
tive stages confirm the expected progression of the intraery-
throcytic development cycle.

Figure 11. PAGA graph illustrating the reconstructed
asexual developmental trajectory for lab-adapted P. falci-
parum. Nodes represent life cycle stages colored by pseudo-
time, and edge thickness indicates connectivity strength be-
tween stages. The cyclical structure and strong edge weights
confirm the expected progression and connectivity of the in-
traerythrocytic development cycle in laboratory culture.

force-directed layout (Figure 18), and rooted at ’game-
tocyte (female)’ (reflecting the initial abundance), pre-
sented a more complex structure. This trajectory not
only showed the separation into male and female popula-
tions but also extended significantly to include the ’LE’
(late-stage) gametocyte populations that were unique to
the field dataset. The PAGA analysis confirmed strong
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Figure 12. Developmental trajectory of asexual P. falci-
parum field isolates. Cells are embedded in a 2D layout
(FR1/FR2) and colored by annotated stage (left) or calcu-
lated pseudotime (right). The plot shows the progression
from late ring to early trophozoite stages, reflecting the lim-
ited asexual stages captured from field samples.

Figure 13. PAGA graph showing the asexual trajectory
in field isolates. Strong connectivity between late ring and
early trophozoite stages reflects the limited asexual stages
captured in the field data.

connections from the main male and female gametocyte
clusters to their respective ’LE’ counterparts (Figure
17), indicating that these late-stage cells represent a fur-
ther point in the maturation trajectory occurring in the
human host. This finding provides compelling evidence
that the sexual development pathway in field isolates
is more prolonged or involves distinct late maturation
steps that are typically not completed or maintained in
standard laboratory culture conditions.

3.5. Identification of candidate master regulators and
inferred regulatory networks

To investigate the potential regulatory mechanisms
underlying the observed differences in developmental
trajectories and transcriptional programs, we applied a

Figure 14. PAGA graph visualizing the sexual develop-
ment trajectory in laboratory-adapted P. falciparum strains.
Nodes represent life cycle stages, and edges indicate inferred
transcriptional connectivity. The graph shows a clear bifur-
cation from developing gametocytes into distinct male and
female lineages.

Figure 15. PAGA graph of the sexual development trajec-
tory in lab-adapted Plasmodium falciparum. Nodes represent
cell stages, colored by pseudotime, with edges indicating con-
nectivity. The graph shows the bifurcation from developing
gametocytes into mature female and male lineages.

computational pipeline designed to identify candidate
transcriptional regulators exhibiting transient expres-
sion peaks that precede major transcriptional shifts or
the activation of co-expressed gene modules along pseu-
dotime. We performed this analysis separately for the
reconstructed asexual and sexual trajectories in both lab
and field datasets.
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Figure 16. PAGA graph showing inferred connectivity be-
tween sexual life cycle stages of P. falciparum field isolates.
Nodes represent gametocyte stages, including late-stage (LE)
forms. Edges indicate strong connections, revealing progres-
sion from female and male gametocytes to their respective
LE stages in field isolates.

Figure 17. PAGA graph of sexual stage development
in field isolates. Nodes represent distinct gametocyte
stages, including late-stage (’LE’) male and female popula-
tions unique to field samples. Edges indicate inferred devel-
opmental connections, revealing progression to later stages
and an extended developmental pathway in the host envi-
ronment.

In the Asexual Lab trajectory, we identified 17 dis-
tinct gene modules exhibiting coordinated expression
dynamics along pseudotime. Our analysis of transient
regulators predicted a remarkable 3,428 putative regula-
tory links. A large number of candidate regulators were

Figure 18. Force-directed layout (FR) of single-cell tran-
scriptomes from sexual stage Plasmodium falciparum field
isolates colored by annotated life cycle stage (left) and in-
ferred developmental pseudotime (right). The trajectory re-
veals progression from earlier gametocytes to late-stage (LE)
populations, illustrating extended maturation observed only
in field isolates.

predicted to have peak expression at the very beginning
of the trajectory (pseudotime bin 0), immediately pre-
ceding the activation of multiple gene modules in sub-
sequent bins (e.g., bin 1). This pattern suggests that
the initiation of the asexual IDC in laboratory culture
is driven by a major, coordinated wave of regulatory
activity involving numerous factors acting early in the
cycle.
For theAsexual Field trajectory (limited to late ring

and early trophozoite stages), we identified 13 gene mod-
ules. However, the analysis predicted significantly fewer
putative regulatory links (945) compared to the lab asex-
ual trajectory. The timing of peak expression for top
candidate regulators in the field asexual trajectory ap-
peared different, with some predicted to peak later in
the observed trajectory segment (e.g., bin 5). An exam-
ple showing the expression profile of a candidate regu-
lator and its target module activation along pseudotime
is presented in Figure 19. This suggests that the reg-
ulatory triggers and dynamics within the observed late
ring and early trophozoite stages may differ in field par-
asites, or that the key initiating regulatory events of the
asexual cycle occur in the unobserved early ring stages.
Analysis of the Sexual Lab trajectory identified 13

gene modules and 404 putative regulatory links. Simi-
lar to the asexual lab trajectory, many candidate regu-
lators were found to exhibit peak expression at the ear-
liest pseudotime bins of the sexual trajectory (Figure
20 shows an example), suggesting a concentrated regu-
latory cascade initiating sexual commitment and early
gametocyte development in culture.
The Sexual Field trajectory presented a dramatically

different picture of the regulatory landscape, aligning
with the expanded trajectory and transcriptional diver-
gence observed in gametocytes. We identified 18 gene
modules, and the analysis predicted 1,917 putative regu-
latory links. This represents a nearly five-fold increase in
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Figure 19. Candidate regulator expression and target mod-
ule activation along the asexual field trajectory. Top panel
shows the binned expression profile of candidate regulator
PF3D7_0532500 across pseudotime bins, with its peak ex-
pression indicated by a dashed red line. The bottom panel
shows the corresponding binned activation score for target
module 3, with the inferred module activation time marked
by a dashed purple line. This example illustrates a temporal
relationship where the candidate regulator’s peak expression
precedes the activation of its putative target module, sup-
porting the inferred regulatory link.

Figure 20. Example of an inferred regulatory relationship
in lab sexual stage parasites. The upper panel shows the
binned expression of candidate regulator PF3D7_0201500
along the sexual development pseudotime trajectory. The
lower panel shows the corresponding binned activation score
of target gene module 2. The peak expression of the candi-
date regulator precedes the activation of the gene module,
supporting a potential regulatory link during sexual devel-
opment in laboratory culture.

predicted regulatory interactions compared to the sexual
lab trajectory, suggesting a substantially more complex
or finely tuned regulatory program governing gameto-
cytogenesis in vivo. Furthermore, candidate regulators

were predicted to act later in the trajectory compared
to the lab, with some peaking in later pseudotime bins
(e.g., bin 17) before the activation of downstream mod-
ules (e.g., bin 18). Figure 21 provides an example of
such a relationship. This timing likely corresponds to
the regulatory events controlling the progression to the
late-stage ’LE’ gametocytes that are unique to the field
environment.

Figure 21. Expression profile of candidate regulator
PF3D7_0103500 (blue) and activation score of target gene
module_1 (green) across pseudotime bins for the Sexual
Field trajectory. The dashed red line indicates the regu-
lator peak, and the dashed purple line indicates target mod-
ule activation, illustrating how regulator expression precedes
module activation.

Collectively, the regulatory network analysis indicates
significant rewiring of the transcriptional control mech-
anisms governing parasite development in response to
adaptation. Field isolates appear to employ altered de-
velopmental trajectories and are regulated by a distinct
set of timed regulatory events, with a particularly pro-
nounced increase in regulatory complexity observed dur-
ing sexual development, potentially facilitating progres-
sion through the full maturation process required for
transmission in the human host. The candidate tran-
sient regulators identified in this analysis provide a rich
set of testable hypotheses for future studies aimed at
dissecting the molecular mechanisms of parasite adap-
tation and stage-specific control.

4. CONCLUSIONS
Malaria caused by Plasmodium falciparum remains a

major health challenge, driven by the parasite’s com-
plex life cycle and ability to adapt to diverse environ-
ments. Understanding the dynamic transcriptional pro-
grams and regulatory networks that govern developmen-
tal stage transitions is crucial, particularly how these dif-
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fer between laboratory-adapted strains and field isolates
reflecting adaptation to the human host. This study
addressed this knowledge gap by employing single-cell
RNA sequencing to provide a high-resolution, dynamic
comparison of development in over 45,000 cells from lab
strains and field isolates.
We utilized advanced computational methods includ-

ing quality control, normalization, dimensionality reduc-
tion (UMAP), differential gene expression analysis, de-
velopmental trajectory inference (PAGA, pseudotime),
gene module identification, and the inference of candi-
date transient transcriptional regulators and their pu-
tative targets. This comprehensive approach allowed us
to dissect the transcriptional landscape and regulatory
dynamics underlying parasite development in different
adaptive contexts.
Our analysis revealed significant differences between

laboratory-adapted strains and field isolates across mul-
tiple levels. Basic cellular metrics and stage compo-
sition showed stark contrasts, with field isolates pos-
sessing a much higher proportion of sexual stages and
uniquely including late-stage gametocytes. The tran-
scriptional landscape, visualized by UMAP, demon-
strated clear separation between lab and field cells, even
within shared life cycle stages. Differential gene expres-
sion analysis confirmed extensive transcriptional diver-
gence within late ring, early trophozoite, and sexual
stages, often with a bias towards upregulation in field
parasites, indicating distinct transcriptional programs
are active in vivo.
Developmental trajectory inference highlighted diver-

gent paths, most notably an extended and distinct sex-

ual development program in field isolates culminating in
late-stage gametocytes not observed in standard labora-
tory culture. This finding provides a dynamic view of
how the human host environment supports the full mat-
uration necessary for transmission. Furthermore, analy-
sis of co-expressed gene modules and candidate transient
regulators indicated substantial rewiring of the regula-
tory networks. The sexual development trajectory in
field isolates was associated with a significantly larger
number of predicted regulatory interactions and later-
acting regulators compared to laboratory strains, sug-
gesting a more complex and potentially prolonged reg-
ulatory landscape governing gametocytogenesis in vivo.
From these results, we learned that adaptation to the

laboratory environment leads to significant divergence
in P. falciparum development, characterized by altered
transcriptional programs, truncated sexual development
trajectories, and substantial rewiring of regulatory net-
works compared to field isolates circulating in human
populations. Field isolates capture the full spectrum
of sexual development and appear to employ a more
complex regulatory strategy for gametocyte maturation.
These findings underscore the importance of studying
field isolates to fully understand parasite biology rel-
evant to transmission and identify key transcriptional
regulators that potentially mediate host-specific devel-
opmental control. This study provides a valuable re-
source and a foundation for future investigations into
the molecular mechanisms of parasite adaptation and
stage-specific regulation.
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