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ABSTRACT
Understanding the mechanisms that halt star formation in galaxies, leading to their eventual quench-

ing, is a fundamental problem in astrophysics. The challenge lies in disentangling the complex interplay
between internal feedback processes, such as those driven by supernovae (SNe) and active galactic nu-
clei (AGN), and the influence of the larger cosmological environment. These processes are highly
degenerate, making it difficult to isolate the specific drivers responsible for quenching. In this study,
we address this challenge by systematically quantifying the impact of feedback and cosmological pa-
rameters on star formation quenching at z = 0. We leverage the CAMELS simulation suite, a unique
collection of hydrodynamical simulations designed to vary key astrophysical and cosmological param-
eters independently. By analyzing the relationships between galaxy properties and these parameters,
we disentangle the relative importance of SNe, AGN feedback, and cosmological factors in regulating
star formation and determine how they correlate with the quenched fraction of galaxies. Our analysis
provides predictive insights for galaxy evolution models and offers a theoretical framework for inter-
preting future observational surveys aimed at understanding the quenching phenomenon, ultimately
providing valuable constraints on the underlying physical processes driving galaxy evolution.

Keywords: Galaxy evolution, Galaxy quenching, Cosmological parameters, N-body simulations, Re-
gression

1. INTRODUCTION
Understanding the physical processes that govern the

evolution of galaxies remains a central goal of modern
astrophysics. Galaxies, as the primary repositories of
stars, gas, and dark matter, exhibit a remarkable di-
versity in their properties, ranging from actively star-
forming spirals to quiescent ellipticals with little to no
ongoing star formation. A critical phase in the life cycle
of a galaxy is the transition from an active star-forming
state to a quenched state, where star formation is sig-
nificantly suppressed or halted altogether. Elucidating
the mechanisms that drive this quenching phenomenon
is essential for a complete understanding of galaxy evo-
lution and the formation of the diverse galaxy popula-
tion we observe throughout cosmic history. This en-
deavor requires a synergistic approach, combining so-
phisticated theoretical models with detailed observa-
tional constraints.
The regulation of star formation in galaxies is a com-

plex process influenced by a multitude of factors oper-
ating on different scales. Internal feedback processes,
driven by supernovae (SNe) and active galactic nuclei
(AGN), play a crucial role in shaping the gas content and

star formation activity of galaxies (Hopkins et al. 2011;
Carr et al. 2022). Supernovae inject energy and mo-
mentum into the interstellar medium (ISM), potentially
heating and expelling gas, thereby suppressing star for-
mation (Hopkins et al. 2011; Carr et al. 2022). Similarly,
AGN can release vast amounts of energy in the form of
radiation and outflows, which can also heat or remove
gas from the galaxy, leading to quenching. These in-
ternal feedback mechanisms are intricately linked to the
properties of the galaxy itself, such as its stellar mass,
morphology, and gas content.
Furthermore, the larger cosmological environment in

which a galaxy resides also exerts a significant influ-
ence on its star formation history (Wijesinghe et al.
2012; Shi et al. 2023; Pérez-Millán et al. 2023). Fac-
tors such as halo mass, merger history, and the density
of the surrounding cosmic web can affect the inflow of
fresh gas into galaxies, which fuels star formation (Wi-
jesinghe et al. 2012; Pérez-Millán et al. 2023). Environ-
mental effects can also trigger morphological transfor-
mations, such as the formation of a bulge, which can
stabilize gas against collapse and prevent star formation
(Pérez-Millán et al. 2023). Disentangling the relative



2

importance of these internal and external factors, and
understanding how they interact to determine a galaxy’s
star formation history, presents a formidable challenge
(Pérez-Millán et al. 2023; Mucesh et al. 2024).
The observed properties of galaxies, such as their stel-

lar mass, morphology, and star formation rate, represent
the integrated outcome of these complex interactions
(Das et al. 2021; Li et al. 2024a). This makes it difficult
to isolate the specific drivers responsible for quenching
based solely on observational data. Moreover, the the-
oretical modeling of these processes is computationally
intensive, demanding high-resolution simulations that
accurately capture the relevant physics on a wide range
of scales (Das et al. 2023; Subramanian et al. 2023).
Such simulations must faithfully reproduce both the in-
ternal physics of galaxies and their interaction with the
larger cosmological environment.
To address these challenges, we present a systematic

study aimed at quantifying the impact of feedback and
cosmological parameters on star formation quenching at
z = 0 (Piotrowska et al. 2021). Our approach leverages
the CAMELS (Cosmology and Astrophysics with Ma-
chinE Learning Simulations) simulation suite, a unique
collection of hydrodynamical simulations specifically de-
signed to independently vary key astrophysical and cos-
mological parameters. The CAMELS suite encompasses
both the IllustrisTNG and SIMBA models, enabling us
to explore the effects of different subgrid physics im-
plementations on quenching. By analyzing the rela-
tionships between galaxy properties and these param-
eters, we aim to disentangle the relative importance of
SNe, AGN feedback, and cosmological factors in regulat-
ing star formation (Bluck et al. 2023; Kurinchi-Vendhan
et al. 2024).
Our methodology involves a comprehensive analysis of

the CAMELS simulation data, focusing on the quenched
fraction of galaxies as a key indicator of quenching effi-
ciency (Xie et al. 2024). We employ a binning strategy
to stratify galaxies by stellar mass and then further sub-
divide them based on the values of the feedback and cos-
mological parameters (Xie et al. 2024). This allows us
to isolate the effects of each parameter on the quenched
fraction, while controlling for other factors (Xie et al.
2024). Furthermore, we utilize statistical modeling tech-
niques, such as multivariate logistic regression, to quan-
tify the dependence of quenching efficiency on these pa-
rameters and to identify potential correlations and in-
teractions. We model the quenched status of a galaxy
as a binary variable, dependent on the input parameters
(Xie et al. 2024).
We derive several key metrics from our analysis, in-

cluding the quenched fraction as a function of stellar

mass and feedback/cosmological parameters (Xie et al.
2024,?; Geha et al. 2024), as well as the median specific
star formation rate (sSFR) in each bin. We estimate the
uncertainties on these metrics using bootstrap resam-
pling techniques, providing a robust assessment of the
statistical significance of our results. Additionally, we
perform partial correlation analysis to isolate the direct
effects of each parameter on the quenched fraction, con-
trolling for stellar mass and other parameters (Porras-
Valverde & Forbes 2024). This allows us to identify the
most influential factors driving quenching.
To validate our findings, we employ k-fold cross-

validation techniques to assess the robustness of our re-
gression models (Narkedimilli et al. 2024). This ensures
that our results are not driven by overfitting or sam-
ple variance. We also perform a series of robustness
checks, repeating key analyses with alternative binning
schemes and sSFR thresholds to confirm the stability of
our conclusions (Martin & Mortlock 2024,?). These val-
idation steps provide confidence in the reliability of our
results and the generalizability of our findings (Narked-
imilli et al. 2024; Martin & Mortlock 2024,?). We ex-
plore the parameter space and compare our findings to
those of previous works to ensure our results are consis-
tent with the current understanding of galaxy evolution
(Stoppa et al. 2023).
Our analysis provides predictive insights for galaxy

evolution models and offers a theoretical framework
for interpreting future observational surveys aimed at
understanding the quenching phenomenon (Schawinski
et al. 2018). By quantifying the relative importance of
different feedback and cosmological parameters, we can
provide valuable constraints on the underlying physical
processes driving galaxy evolution (Lapi et al. 2025).
This will help improve the accuracy and predictive
power of galaxy evolution models, allowing them to bet-
ter reproduce the observed properties of galaxies across
cosmic time (Li et al. 2024b). The results can be used
to improve the theoretical models which inform the ob-
servational surveys, and the observational surveys that
improve the theoretical models (Comparat et al. 2025).
In future work, we plan to extend our analysis to

higher redshifts, exploring the evolution of quenching ef-
ficiency over cosmic time (Mao et al. 2022; Bravo et al.
2023). This will provide a more complete picture of
the quenching process and its dependence on feedback
and cosmological parameters (Dou et al. 2025). We also
plan to investigate the role of different quenching mech-
anisms, such as morphological quenching and environ-
mental quenching, in more detail (Mao et al. 2022; El-
lison et al. 2024). This will involve analyzing the mor-
phology and environment of galaxies in the CAMELS
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simulations and correlating these properties with their
star formation activity (Mao et al. 2022; Bravo et al.
2023; Ellison et al. 2024). Ultimately, this will lead to
a more comprehensive understanding of the complex in-
terplay between internal and external factors in regulat-
ing galaxy evolution.

2. METHODS
2.1. Data Acquisition and Preparation

The foundation of this study rests upon the CAMELS
(Cosmological and Astrophysical Models for Extremely
Luminous Sources) project, a suite of cosmological hy-
drodynamical simulations. We utilize the publicly avail-
able data, specifically the IllustrisTNG and SIMBA
simulation sets, each comprising 1000 simulations with
varying cosmological and astrophysical parameters. The
CAMELS simulations are particularly well-suited for
this analysis due to their systematic variation of key
parameters, enabling a disentangling of the effects of
feedback and cosmology on galaxy evolution.
We begin by acquiring the galaxy-level data from

the CAMELS database. This data is stored
in parquet format for efficient storage and re-
trieval. Specifically, we load two primary dataframes:
galaxies_full_optimal.parquet, containing detailed
information on individual galaxies within the simula-
tions, and catalog_params_optimal.parquet, provid-
ing the corresponding cosmological and feedback param-
eter values for each simulation. These dataframes are
read into memory using the pandas library in Python,
leveraging the read_parquet function for optimized I/O
performance.
The galaxies_full_optimal.parquet dataframe

contains crucial information for each galaxy, includ-
ing its star formation rate (SFR) and stellar mass
(M_star). The catalog_params_optimal.parquet
dataframe contains the six parameters that are var-
ied across the CAMELS simulations: two parameters
controlling the efficiency of supernova feedback (A_SN1,
A_SN2), two parameters controlling the efficiency of
AGN feedback (A_AGN1, A_AGN2), the matter density
parameter (Omega_m), and the amplitude of the matter
power spectrum (sigma_8) (Villaescusa-Navarro et al.
2022; Lee et al. 2024). Each simulation is uniquely iden-
tified by a catalog_number.

2.2. Calculation of Derived Quantities and Data
Integration

Following data loading, we compute the specific star
formation rate (sSFR) for each galaxy, defined as the
ratio of the SFR to the stellar mass (sSFR = SFR /
M_star) (Bauer et al. 2005). This quantity serves as

a key indicator of a galaxy’s star-forming activity. We
then define a galaxy as ”quenched” if its sSFR falls below
a threshold of 10−11 yr−1 (Whitaker et al. 2017; Katsia-
nis et al. 2020; Leslie et al. 2020). A boolean column is
added to the galaxy dataframe, indicating whether each
galaxy meets this quenching criterion.
To link galaxy-level properties with the cor-

responding simulation parameters, we merge the
catalog_params_optimal.parquet dataframe onto the
galaxies_full_optimal.parquet dataframe using the
catalog_number as the common key. This ensures
that each galaxy is associated with the correct values of
A_SN1, A_SN2, A_AGN1, A_AGN2, Omega_m, and sigma_8
from its parent simulation (Contardo et al. 2025). The
merging operation is performed using the merge func-
tion in pandas (de Santi et al. 2025; Ivanov et al. 2025).

2.3. Binning Strategy for Parameter Space Exploration
To systematically explore the influence of stellar mass,

feedback, and cosmological parameters on quenching, we
employ a binning strategy. First, galaxies are divided
into bins based on their stellar mass. We utilize logarith-
mic bins, specifically log(M_star/M⊙) = [8.5–9.5], [9.5–
10.5], and [10.5–11.5] (Porras-Valverde & Forbes 2024).
These bins are chosen to ensure sufficient galaxy counts
within each bin, providing robust statistical analysis.
Within each stellar mass bin, we further stratify galax-

ies based on the feedback and cosmological parameters
(Vaughan et al. 2024). For the feedback parameters
(A_SN1, A_SN2, A_AGN1, A_AGN2) and the cosmological
parameters (Omega_m, sigma_8), we divide their respec-
tive ranges into quantiles (Arango-Toro et al. 2025).
This approach ensures a uniform sampling across the
parameter space, even if the underlying distributions are
non-uniform. We experiment with different numbers of
quantiles (e.g., quartiles or quintiles) to optimize the
balance between resolution and statistical power.
For higher-order analysis, we explore the use of two-

dimensional binning (e.g., A_SN1 vs. A_AGN1) to capture
potential interactions between parameters (Cappellari
& Copin 2002, 2003; Cappellari 2009). In cases where
multi-dimensional binning leads to sparse bins, we em-
ploy regression techniques to disentangle the effects of
individual parameters without excessive binning.

2.4. Calculation of Quenching Metrics and
Uncertainty Estimation

For each combination of stellar mass bin and
parameter bin, we calculate the quenched fraction
(f_quenched), defined as the number of quenched galax-
ies (N_quenched) divided by the total number of galaxies
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(N_total) within that bin (Xie et al. 2024).

fquenched =
Nquenched
Ntotal

(1)

In addition to the quenched fraction, we also compute
the median sSFR within each bin to provide a contin-
uous measure of star-forming activity (Banerjee et al.
2023; Shi et al. 2023).
To quantify the uncertainties associated with the

quenched fraction and median sSFR, we employ a boot-
strap resampling technique (Sanderson & Ponman 2009;
Mohammad & Percival 2022). Within each bin, we
resample galaxies with replacement a large number of
times (e.g., 1000 times). For each resampled dataset,
we recalculate the quenched fraction and median sSFR.
The standard deviation of these resampled values is then
used as an estimate of the uncertainty for each met-
ric (Sanderson & Ponman 2009; Mohammad & Percival
2022).

2.5. Statistical Modeling and Regression Analysis
To quantify the dependence of quenching efficiency

on feedback and cosmological parameters, we perform
multivariate logistic regression (Kuschel et al. 2023; Xie
et al. 2024; Rutkowski et al. 2025). The dependent vari-
able is the quenched status of a galaxy (a binary vari-
able indicating whether a galaxy is quenched or not),
and the independent variables are the feedback param-
eters (A_SN1, A_SN2, A_AGN1, A_AGN2), the cosmological
parameters (Omega_m, sigma_8), and the logarithm of
the stellar mass (log(M_star)). The logistic regression
model takes the form:

logit(p) = β0+β1ASN1+β2ASN2+β3AAGN1+β4AAGN2+β5Ωm+β6σ8+β7 log(Mstar)+. . .

(2)
where p is the probability of a galaxy being quenched, βi

are the regression coefficients, and the ellipsis indicates
the potential inclusion of interaction terms (Romero-
Gómez et al. 2024; Zheng et al. 2025).
We also consider the inclusion of interaction terms

(e.g., A_SN1 × A_AGN1) in the regression model to cap-
ture potential non-linear effects and dependencies be-
tween parameters (Llorella & Cebrián 2025; Tian et al.
2025).
To isolate the direct effects of each parameter on

the quenched fraction, we compute partial correlations
between each parameter and the quenched fraction,
controlling for stellar mass and the other parameters
(Porras-Valverde & Forbes 2024).

2.6. Model Validation and Robustness Checks
To assess the robustness of the regression results, we

employ k-fold cross-validation (Hammond et al. 2024;

Sweet 2024). We divide the data into k folds (e.g., k=5)
(Sweet 2024). For each fold, we fit the model on the
remaining k-1 folds (the training set) and test its per-
formance on the held-out fold (the testing set) (Sweet
2024). We repeat this process for each of the k folds,
and record performance metrics such as accuracy and
area under the receiver operating characteristic curve
(AUC) (Hammond et al. 2024; Sweet 2024). The cross-
validation provides an estimate of the model’s gener-
alization performance and helps to prevent overfitting
(Hammond et al. 2024; Sweet 2024).
We also perform robustness checks by repeating key

analyses with alternative binning schemes (Leslie et al.
2021; Dainotti et al. 2024; Chen et al. 2024) and sSFR
thresholds to confirm the stability of the results.

2.7. Computational Implementation
All data processing, analysis, and visualization are

performed using Python, leveraging libraries such
as pandas, numpy, scikit-learn, matplotlib, and
seaborn (Giri 2025). Vectorized operations in pandas
and numpy are used extensively to optimize computa-
tional efficiency (Turk & Smith 2011). For computa-
tionally intensive tasks such as bootstrap resampling
and cross-validation, we leverage parallel processing us-
ing Python’s concurrent.futures module to utilize all
available CPU cores (Turk & Smith 2011).

3. RESULTS
3.1. Quenched Fraction Trends

This section presents a detailed analysis of star for-
mation quenching efficiency across the CAMELS simu-
lation suite, focusing on the impact of supernova (SN)
and active galactic nucleus (AGN) feedback parameters,
as well as cosmological parameters. We explore trends
in quenched fractions, examine the relative importance
of each parameter using statistical modeling, and in-
vestigate the interplay between these factors in driving
galaxy quenching at z = 0.

3.1.1. Stellar Mass Dependence

We begin by examining the quenched fraction
(fquenched), defined as the fraction of galaxies with spe-
cific star formation rate (sSFR) below 10−11 yr−1, as a
function of stellar mass and the varied simulation pa-
rameters. The distribution of sSFR for quenched and
star-forming galaxies is shown in Figure 1, illustrating
a clear separation between the two populations. The
stellar mass distributions for quenched and star-forming
galaxies are shown in Figure 2, indicating that star-
forming galaxies tend to have lower stellar masses than
quenched galaxies. Galaxies are binned into stellar mass
ranges of width one dex.
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A strong positive correlation exists between stellar
mass and quenched fraction. In the highest mass bin
considered, 10.5 ≤ log10(Mstar/M⊙) < 11.5, fquenched
consistently exceeds 0.8 across all feedback parame-
ter values. This indicates that galaxies in this mass
range are nearly universally quenched, irrespective of
the specific feedback implementation. In contrast, the
quenched fraction varies significantly with feedback pa-
rameters in lower mass bins.

Figure 1. Distribution of specific star formation rates
(sSFR) for quenched and star-forming galaxies. A clear
separation is observed between the two populations, with
quenched galaxies exhibiting significantly lower sSFR values
compared to star-forming galaxies. The quenched galaxies
have a higher normalized count at lower sSFR values.

3.1.2. Supernova Feedback

The parameter ASN1, representing the SN wind en-
ergy per unit star formation rate, exhibits a notable
*negative* correlation with fquenched in low to interme-
diate mass galaxies. This trend is illustrated in Figure
3, where the quenched fraction is plotted against ASN1

for different stellar mass bins. Specifically, for galaxies
in the lowest mass bin (9.5 ≤ log10(Mstar/M⊙) < 10.5),
fquenched decreases from approximately 0.40 in the low-
est quartile of ASN1 values to around 0.24 in the high-
est quartile. This suggests that enhanced SN feedback
can suppress quenching, potentially by maintaining a
turbulent interstellar medium (ISM) and preventing the
collapse of gas clouds necessary for sustained star for-
mation. The distribution of ASN1 for quenched and
star-forming galaxies is shown in Figure 4, further high-
lighting the differences between the two populations.

3.1.3. AGN Feedback

Figure 2. The figure shows the stellar mass distribution,
separated by quenching status. The red histogram repre-
sents quenched galaxies, while the blue histogram represents
star-forming galaxies. The x-axis shows the logarithm of the
stellar mass in solar masses, and the y-axis shows the normal-
ized count. There are large differences in the distributions,
with star-forming galaxies peaking at lower stellar masses
than quenched galaxies.

Figure 3. The figure shows the quenched fraction as a
function of ASN1 for three different stellar mass bins: 8.5 ≤
log10(Mstar/M⊙) < 9.5, 9.5 ≤ log10(Mstar/M⊙) < 10.5,
and 10.5 ≤ log10(Mstar/M⊙) < 11.5. The quenched frac-
tion decreases with increasing ASN1 for all mass bins. At a
given ASN1, the quenched fraction is higher for more massive
galaxies.

Conversely, the AGN feedback parameter AAGN1, rep-
resenting the AGN feedback energy per unit accretion
rate, displays a positive correlation with fquenched across
all mass bins. This trend is visible in Figure 5, which
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Figure 4. Distribution of ASN1 for quenched and star-
forming galaxies. The plot shows the normalized count of
ASN1 values, with quenched galaxies indicated in red and
star-forming galaxies in blue. The distribution of ASN1 ex-
hibits differences between the two types of galaxies.

shows the quenched fraction as a function of AAGN1 for
different stellar mass bins. For example, in the highest
mass bin, fquenched increases from approximately 0.72
in the lowest quartile of AAGN1 to approximately 0.94
in the highest quartile. Figure 6 shows the distribution
of AAGN1 for quenched and star-forming galaxies, illus-
trating the higher AAGN1 values for quenched galaxies.
This result supports the established paradigm that AGN
feedback plays a critical role in maintaining quenching
in massive galaxies, by heating and/or expelling the gas
reservoir.

3.1.4. Other Feedback Parameters

The parameters ASN2 (SN wind speed) and AAGN2

(AGN kinetic mode ejection speed) show weaker and
less systematic trends compared to ASN1 and AAGN1.
Figure 7 shows the quenched fraction as a function of
ASN2 for different stellar mass bins, indicating a weak
dependence. Similarly, Figure 9 shows the quenched
fraction as a function of AAGN2, also showing a weak
dependence. The distributions of ASN2 and AAGN2 for
quenched and star-forming galaxies are shown in Figure
8 and Figure 10, respectively. This suggests that the
overall energy injected by feedback processes is more
crucial for regulating quenching than the specific veloc-
ity of the outflows, at least within the parameter ranges
explored in this study.

3.1.5. Cosmological Parameters

The cosmological parameters Ωm (matter density pa-
rameter) and σ8 (power spectrum normalization) also

Figure 5. Quenched fraction as a function of A_AGN1 for
different stellar mass bins. The quenched fraction increases
with increasing A_AGN1, with large differences seen be-
tween the different stellar mass bins.

Figure 6. The distribution of A_AGN1 is shown, sepa-
rated by quenching status. Star-forming galaxies are shown
in blue, while quenched galaxies are shown in red. There are
large differences between the two populations with quenched
galaxies having higher A_AGN1 values.

influence the quenched fraction. Higher values of both
parameters are associated with an increased fquenched.
This is consistent with the idea that denser cosmic en-
vironments and enhanced clustering, leading to earlier
structure formation, favor quenching processes such as
accelerated black hole growth and the formation of more
massive halos, which more efficiently host quenching
mechanisms.

3.2. Statistical Modeling and Feature Importance
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Figure 7. The figure displays the quenched fraction as a
function of ASN2 for three different stellar mass bins. The
quenched fraction increases with stellar mass, with galaxies
in the highest mass bin (10.5 ≤ log10(Mstar/M⊙) < 11.5)
showing a consistently high quenched fraction across all val-
ues of ASN2. The quenched fraction shows a weak depen-
dence on ASN2 for each mass bin.

Figure 8. The distribution of ASN2 is shown for both
quenched and star-forming galaxies. The distributions show
that star-forming galaxies have a higher density at smaller
ASN2 values than quenched galaxies.

To quantify the relative importance of each param-
eter in predicting galaxy quenching, we employ a lo-
gistic regression model. The target variable is a bi-
nary flag indicating whether a galaxy is quenched (sSFR
< 10−11 yr−1). We use permutation feature impor-
tance to assess the contribution of each parameter to
the model’s performance.

Figure 9. The quenched fraction as a function of AAGN2

for different stellar mass bins is shown. The quenched frac-
tion is significantly higher for galaxies in the highest mass
bin (10.5 ≤ log10(Mstar/M⊙) < 11.5) compared to the lower
mass bins. The quenched fraction appears to be relatively
constant as a function of AAGN2 for each mass bin.

Figure 10. Distribution of A_AGN2 for quenched
and star-forming galaxies. The normalized count is plot-
ted against A_AGN2. Overall, the star-forming galaxies
tend to have slightly smaller A_AGN2 values compared to
quenched galaxies, but the differences are relatively small
with significant overlap in the distributions.

3.2.1. Permutation Feature Importance

The permutation feature importance analysis reveals
that σ8 is the most important parameter (impor-
tance mean ∼0.155), followed by AAGN1 (∼0.148), Ωm

(∼0.128), and the logarithm of stellar mass (logMstar,
∼0.104). The supernova feedback parameter ASN1 also
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exhibits significant importance (∼0.094). These results
are summarized in Figure 11, which shows the permu-
tation feature importances for all parameters. These
results underscore the combined influence of cosmolog-
ical environment, AGN feedback, and stellar mass on
galaxy quenching.

Figure 11. The figure displays the permutation feature im-
portances, quantifying the contribution of different features
and their combinations to the model’s performance. The x-
axis represents the permutation importance (mean ± std),
while the y-axis lists the features. The features ”sigma_8”,
”A_AGN1”, ”Omega_m”, ”logMstar”, and ”A_SN1” show
the largest permutation importance.

3.2.2. Logistic Regression Coefficients

The coefficients of the logistic regression model further
highlight the key drivers of quenching. The coefficients
are shown in Figure 12. AAGN1 has a strong positive
coefficient (+1.87), indicating a strong positive associ-
ation with quenching. Similarly, σ8 (+1.66), logMstar

(+1.41), and Ωm (+1.13) also have positive coefficients.
In contrast, ASN1 has a negative coefficient (–0.97), re-
flecting its role in suppressing quenching. The magni-
tudes of these coefficients emphasize the substantial im-
pact of AGN feedback and cosmological parameters on
driving galaxy quenching.

3.2.3. Partial Correlations

Partial correlation analysis, which measures the cor-
relation between two variables while controlling for the
effects of other variables, confirms the results obtained
from the regression analysis. AAGN1, σ8, and Ωm ex-
hibit positive partial correlations with quenching (with
values around +0.15, +0.16, and +0.14, respectively),
while ASN1 shows a negative partial correlation (–0.11).

3.2.4. Model Performance

The full logistic regression model, including all param-
eters and their interactions, achieves a mean accuracy

Figure 12. The figure shows the Logistic Regression Coef-
ficients for the full model. Large differences are seen in the
magnitude and sign of the coefficients, indicating varying de-
grees of influence from different combinations of cosmological
parameters (e.g., σ8, Ωm, logMstar) and survey parameters
(A_SN1, A_SN2, A_AGN1, A_AGN2) on the logistic re-
gression model.

of approximately 66.5% and an area under the receiver
operating characteristic curve (AUC) of approximately
0.685. A simplified model using only the top three most
important features (σ8, AAGN1, and Ωm) yields slightly
lower performance (accuracy ∼64.5% and AUC ∼0.645).
This suggests that the majority of the predictive power is
concentrated in a few key parameters, though the inclu-
sion of other parameters does provide some additional
predictive power.

3.3. Mass Dependence and Parameter Interplay
The analysis reveals that the dominant quenching

mechanisms differ across stellar mass ranges. AGN feed-
back appears to be the primary driver of quenching in
high-mass galaxies, while SN feedback plays a more reg-
ulatory role in low to intermediate mass systems.
To further explore the interplay between parame-

ters, we generate two-dimensional heatmaps showing the
quenched fraction as a function of pairs of parameters.
Figure 13 shows the heatmap of the quenched fraction as
a function of AAGN1 and ASN1 for galaxies with stellar
masses in the range 8.5 ≤ log10(Mstar/M⊙) < 9.5. Fig-
ure 14 and Figure 15 show the same heatmap for galaxies
with stellar masses in the range 9.5 ≤ log10(M⋆/M⊙) <

10.5 and 10.5 ≤ log10(M⋆/M⊙) < 11.5, respectively.
These visualizations indicate that the highest quenched
fractions occur in regions where AAGN1 is high and
ASN1 is low. This suggests a synergistic effect, where
quenching is most efficient when AGN feedback is strong
and SN feedback is weak. This also suggests that the
quenching is not simply a linear combination of the ef-
fects of the parameters, but that there are non-linear
interactions between them.
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Figure 13. Heatmap of the quenched fraction (fquenched) as
a function of AAGN1 and ASN1 for galaxies with stellar masses
in the range 8.5 ≤ log10(Mstar/M⊙) < 9.5. The quenched
fraction increases with increasing AAGN1 and *decreasing*
ASN1, with a more pronounced increase along the AAGN1

axis.

Figure 14. Quenched fraction heatmap for galaxies with
stellar masses in the range 9.5 ≤ log10(M⋆/M⊙) < 10.5. The
x-axis represents AAGN1 and the y-axis represents ASN1.
The colorbar indicates the quenched fraction, fquenched. The
quenched fraction increases as you move towards larger val-
ues of AAGN1.

4. CONCLUSIONS

Figure 15. Quenched fraction of galaxies with stellar
mass 10.5 ≤ log10(M⋆/M⊙) < 11.5 as a function of AAGN1

and ASN1. The quenched fraction increases with increasing
AAGN1.

In this study, we have systematically investigated the
efficiency of star formation quenching across a wide
range of feedback and cosmological parameters using the
CAMELS simulations. Our primary goal was to disen-
tangle the complex interplay between supernova (SN)
feedback, active galactic nucleus (AGN) feedback, and
cosmological parameters in driving the cessation of star
formation in galaxies at z = 0. By leveraging the ex-
tensive parameter space coverage of the CAMELS sim-
ulations, we aimed to provide quantitative insights into
the physical drivers of quenching and offer predictive
guidance for galaxy evolution models and future obser-
vational surveys.
We utilized galaxy-level data from the IllustrisTNG

and SIMBA simulation suites within CAMELS, fo-
cusing on key parameters such as SN feedback effi-
ciency (ASN1, ASN2), AGN feedback efficiency (AAGN1,
AAGN2), matter density parameter (Ωm), and the am-
plitude of the matter power spectrum (σ8). We calcu-
lated the quenched fraction (fquenched) for galaxies in
different stellar mass bins and explored the dependence
of fquenched on the aforementioned parameters. Statis-
tical techniques, including permutation feature impor-
tance, logistic regression, and partial correlation analy-
sis, were employed to quantify the relative importance
of each parameter and to uncover potential interactions.
Our results reveal a nuanced picture of galaxy quench-

ing. We found that AGN feedback, particularly the
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AGN feedback energy per accretion (AAGN1), is the
dominant quenching mechanism in massive galaxies,
while SN feedback exhibits a more regulatory effect in
lower-mass systems. Specifically, an increase in AAGN1

correlates with a higher quenched fraction, especially
in galaxies with log10(Mstar/M⊙) ≥ 10.5. Conversely,
higher SN wind energy (ASN1) tends to *decrease* the
quenched fraction in low to intermediate mass galax-
ies. Furthermore, we observed that cosmological param-
eters (Ωm and σ8) positively influence quenching effi-
ciency, suggesting that denser cosmic environments and
enhanced clustering promote quenching.
From this study, we have learned that the efficiency

of star formation quenching is not solely determined by
internal feedback processes but is also significantly influ-
enced by the broader cosmological context. The inter-
play between AGN feedback, SN feedback, and cosmo-
logical parameters is complex and nonlinear, with stellar

mass acting as a crucial modulator. Our findings under-
score the importance of accurately representing AGN
feedback in galaxy evolution models, particularly for
massive galaxies, and of considering the environmental
context when studying quenching. The results also sug-
gest that future models should adopt a joint, nonlinear
approach to capture the synergistic effects that operate
across different mass regimes.
In conclusion, our analysis of the CAMELS simula-

tions provides a comprehensive map of star formation
quenching efficiency across feedback and cosmological
parameter space. We have demonstrated that AGN
feedback, SN feedback, and cosmological parameters all
play significant, interconnected roles in driving the ces-
sation of star formation in galaxies. These findings of-
fer valuable insights for refining galaxy evolution mod-
els and interpreting observational data from future sur-
veys.
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