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ABSTRACT
Understanding how Physics-Informed Neural Networks (PINNs) encode complex physical systems

and the influence of parameters like initial conditions within their latent representations is crucial for
interpretability and application. This study investigates the geometric structure of the 10-dimensional
latent space generated by a PINN solving the 2D Burger’s equation across 25 different initial con-
ditions. Using Principal Component Analysis and subspace similarity measures, we analyze the set
of latent vectors for each initial condition as a potential low-dimensional manifold embedded in R10,
comparing and contrasting these structures across the dataset of simulated solutions. The analysis
reveals a highly organized latent space; globally, the latent vectors occupy an effectively 6-dimensional
subspace capturing over 99% of variance. For each individual initial condition, the latent vectors form
a distinct, approximately 3-dimensional affine manifold, a structure remarkably consistent across all
tested conditions. Crucially, the primary effect of changing the initial condition is encoded as a trans-
lation of this 3D manifold along a nearly one-dimensional path within the 10-dimensional latent space,
strongly aligned with the global principal component. Furthermore, these 3D manifolds are remark-
ably parallel to each other, exhibiting an average subspace similarity exceeding 0.98, with only subtle,
low-dimensional variations in their orientation. These findings demonstrate that the PINN learns a
highly structured and efficient parameterization where initial conditions select specific, geometrically
simple, and highly related low-dimensional structures within the overall latent space, offering valuable
insights into the network’s internal encoding mechanisms and suggesting potential avenues for model
interpretation and compression.

Keywords: Neural networks, Computational astronomy, Principal component analysis, Astronomy data
analysis, Computational methods

1. INTRODUCTION
Physics-Informed Neural Networks (PINNs) represent

a significant advancement in solving partial differential
equations (PDEs) by embedding the governing physical
laws directly into the neural network architecture and
training objective.

This approach offers compelling advantages, such as
the ability to handle complex geometries and scenarios
with limited observational data, providing a mesh-free
alternative to traditional numerical techniques. How-
ever, despite their successes, PINNs, like many deep
learning models, often function as ”black boxes,” ob-
scuring the precise mechanisms by which they learn and
represent the underlying physical phenomena. Under-
standing how these networks encode complex solution
landscapes and incorporate the influence of problem pa-
rameters, such as initial and boundary conditions, is

paramount for enhancing their reliability, interpretabil-
ity, and facilitating downstream applications like model
compression or transfer learning.

A central element within many neural network ar-
chitectures, including PINNs, is the latent space.
This intermediate representation layer compresses high-
dimensional input data into a more abstract, often
lower-dimensional, form. In the context of a PINN solv-
ing a PDE, the latent space typically holds a learned
encoding of the physical state of the system at specific
points in space and time (x, t).

Investigating the structure of this latent space pro-
vides a window into how the network perceives and pro-
cesses the physics. A fundamental challenge lies in deci-
phering how the latent representation varies across the
physical domain (x, t) and, critically, how this variation
changes in response to modifications in the problem’s
parameters, such as the initial condition. The difficulty
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is compounded by the potentially high dimensionality
of the latent space (10 dimensions in this study) and
the unknown, potentially complex non-linear geometric
structures formed by the collection of latent vectors cor-
responding to a given physical solution. For a specific
initial condition, the set of latent vectors {L(x, t)} sam-
pled over a grid of (x, t) points forms a point cloud in
this 10-dimensional space, whose intrinsic structure and
relationship to other such point clouds generated by dif-
ferent initial conditions are not a priori understood.

This study focuses on dissecting the geometric struc-
ture of the 10-dimensional latent space generated by a
PINN trained to solve the 2D Burger’s equation. The 2D
Burger’s equation is a canonical non-linear PDE widely
used as a simplified model for complex fluid dynamics
phenomena like turbulence and shock formation, known
for its rich dynamic behavior highly sensitive to initial
conditions. We specifically examine how the PINN’s
latent representation of the solution changes across 25
distinct initial conditions. For each initial condition, we
treat the collection of latent vectors {L(x, t)} sampled
across a discrete grid of (x, t) points as a dataset forming
a point cloud in R10. Our primary objective is to analyze
the geometric properties of these point clouds, charac-
terizing their effective dimensionality, shape, and how
these characteristics compare and contrast across the
ensemble of 25 initial conditions. We hypothesize that
despite the complexity of the Burger’s equation and the
high dimensionality of the latent space, the network may
learn a structured and perhaps simple encoding where
the latent point clouds exhibit low-dimensional geomet-
ric properties and are related across initial conditions by
simple transformations.

To achieve this, we employ a suite of geometric analy-
sis techniques. Principal Component Analysis (PCA) is
utilized extensively to quantify the dominant directions
of variation and determine the effective low dimensional-
ity of the latent vector point clouds, both for the global
collection of all latent vectors across all initial condi-
tions, and for the point cloud corresponding to each
individual initial condition. Furthermore, we employ
subspace similarity measures to quantitatively compare
the orientations of the principal subspaces learned for
different initial conditions. By systematically analyzing
the centroids of these point clouds and the relationship
between their principal components and the global la-
tent space structure, we aim to build a comprehensive
picture of how the PINN encodes the effect of varying
initial conditions within its learned representation. This
approach allows us to test whether changes in initial
conditions correspond to simple, predictable geometric

transformations, such as translations or rotations, of a
fundamental latent structure.

Our analysis reveals a highly structured organization
within the latent space. We find that, while the latent
space is 10-dimensional, the entire collection of latent
vectors across all initial conditions occupies an effec-
tively 6-dimensional subspace, capturing over 99% of the
total variance.

Strikingly, for each individual initial condition, the
corresponding set of latent vectors forms a distinct, ap-
proximately 3-dimensional affine manifold. This 3D
structure is remarkably consistent in its intrinsic dimen-
sionality and variance distribution across all 25 tested
initial conditions. Crucially, the primary effect of chang-
ing the initial condition is encoded as a translation
of this consistent 3D manifold. These manifold cen-
troids trace a nearly one-dimensional path within the
10-dimensional latent space, strongly aligned with the
dominant global principal component. Moreover, the
orientations of these 3D manifolds are exceptionally sim-
ilar, exhibiting an average subspace similarity exceeding
0.98, indicating they are nearly parallel with only sub-
tle, low-dimensional variations in their alignment. These
findings demonstrate that the PINN learns a highly effi-
cient and structured parameterization where initial con-
ditions select specific, geometrically simple, and highly
related low-dimensional structures within the overall la-
tent space, offering valuable insights into the network’s
internal encoding mechanisms and suggesting potential
avenues for model interpretation and compression.

2. METHODS
The objective of this study is to dissect the geomet-

ric structure of the 10-dimensional latent space gen-
erated by a Physics-Informed Neural Network (PINN)
trained to solve the 2D Burger’s equation. We investi-
gate how the latent representations corresponding to dif-
ferent initial conditions are organized within this space
and how their structure relates across an ensemble of
25 distinct initial conditions. Our methodology involves
data preparation, applying Principal Component Anal-
ysis (PCA) to characterize the dimensionality and vari-
ance distribution of latent vector sets, and employing
subspace similarity measures to compare the orienta-
tions of principal subspaces across different initial con-
ditions.

2.1. Latent Space Data Preparation
The data used in this analysis originates from a pre-

trained PINN solving the 2D Burger’s equation over a
specified spatiotemporal domain. The data was pro-
vided as a NumPy array data_bundle with dimensions
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(101, 103, 25, 13). These dimensions correspond to spa-
tial grid points (x-coordinate), time steps (t), initial con-
dition index, and features, respectively. The spatial grid
consists of 101 points along the x-axis, and the temporal
domain is discretized into 103 time steps. The dataset
includes solutions and latent space representations for 25
different initial conditions. The features dimension (size
13) contains the predicted solution components (e.g.,
velocity fields u and v) and the 10-dimensional latent
vector output by an intermediate layer of the PINN for
each spatial point (x) and time step (t) under a specific
initial condition.

The 10-dimensional latent space data was extracted
from the last 10 components of the features dimen-
sion. This resulted in a tensor latent_space_data
with dimensions (101, 103, 25, 10). Each element
latent_space_data[i, j, k, :] represents the 10-
dimensional latent vector L(xi, tj , ICk) corresponding to
the spatial point xi, time tj , and the k-th initial condi-
tion ICk. For each initial condition k, the set of latent
vectors {L(xi, tj , ICk)} over all i = 0..100 and j = 0..102
forms a collection of 101×103 = 10403 points in the 10-
dimensional latent space R10. This collection is treated
as a point cloud representing the PINN’s latent encoding
of the physical solution for initial condition ICk.

2.2. Geometric Analysis Techniques
To analyze the structure of these point clouds and

their relationships, we employed Principal Component
Analysis (PCA) (Ferreras et al. 2006; Ugwoke et al.
2023; Nandi & Pandey 2025) and subspace similarity
measures.

2.2.1. Principal Component Analysis (PCA)

PCA is a statistical procedure that uses an orthogo-
nal transformation to convert a set of observations of
possibly correlated variables into a set of values of lin-
early uncorrelated variables called principal components
(Ferreras et al. 2006; McGurk et al. 2010). This trans-
formation is defined in such a way that the first prin-
cipal component has the largest possible variance (that
is, accounts for as much of the variability in the data as
possible), and each succeeding component in turn has
the highest variance possible under the constraint that
it is orthogonal to the preceding components (Ferreras
et al. 2006). The principal components are the eigen-
vectors of the data’s covariance matrix, and their corre-
sponding eigenvalues represent the variance along those
directions (Ferreras et al. 2006; McGurk et al. 2010).

In this study, PCA was applied in several contexts:
(Paraficz et al. 2016; Hatipoğlu 2022; Cretignier et al.
2022; Sharma & Jassal 2024)

• Global PCA: PCA was applied to the en-
tire collection of latent vectors across all spatial
points, time steps, and initial conditions. The
latent_space_data tensor was reshaped into a
2D matrix of size (101 × 103 × 25, 10), effectively
treating all 10403×25 = 260075 latent vectors as a
single dataset in R10. This global PCA reveals the
overall dimensionality and dominant directions of
variation within the latent space spanned by all
observed states. The eigenvalues were used to cal-
culate the percentage of total variance explained
by each principal component and the cumulative
variance, providing an estimate of the effective
global dimensionality.

• Per-Initial Condition PCA: For each of the 25
initial conditions, PCA was applied independently
to the set of 10403 latent vectors {L(xi, tj , ICk)}
corresponding to that specific initial condition k.
For each IC k, the data latent_space_data[:,
:, k, :] was reshaped into a 2D matrix of size
(10403, 10). This per-IC PCA characterizes the
intrinsic dimensionality and shape of the point
cloud associated with a single physical solution.
The centroid (mean vector) Ck of the point cloud
for IC k was calculated, and the eigenvalues and
eigenvectors (principal components) of its covari-
ance matrix were obtained. The eigenvalues in-
dicate the variance along the principal directions,
and the eigenvectors form an orthonormal basis for
the principal subspace capturing the data’s varia-
tion. The cumulative variance explained by the
principal components for each IC was analyzed to
determine the effective intrinsic dimensionality of
the manifold for that specific initial condition.

• PCA on Centroids: The centroids Ck for each
of the 25 initial conditions are 10-dimensional vec-
tors. These 25 centroid vectors were collected into
a 2D matrix of size (25, 10). PCA was applied to
this matrix to analyze the geometric arrangement
of the manifold centroids in the latent space. This
reveals whether the variation in initial conditions
primarily translates the latent manifold along a
low-dimensional path or occupies a more complex
structure in the latent space.

For all PCA applications, the data was centered by
subtracting the mean before computing the covariance
matrix and performing the eigenvalue decomposition
(Hatipoğlu 2023; Çakır & Buck 2024).

2.2.2. Subspace Similarity Measures
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To compare the orientations of the principal sub-
spaces identified by the per-IC PCA, we employed sub-
space similarity measures. For each initial condition
k, the per-IC PCA yields a set of principal compo-
nents {vk,1, vk,2, . . . , vk,10} ordered by their correspond-
ing eigenvalues. Based on the cumulative variance ex-
plained, we determined an effective intrinsic dimension-
ality dic for the individual manifolds (e.g., the number of
components capturing 95% of variance) (Ferreras et al.
2006; Nandi & Pandey 2025). The principal subspace
for IC k is then approximated by the span of its first dic
principal components, span{vk,1, . . . , vk,dic

}.
To quantify the similarity between the principal sub-

spaces of two initial conditions k and j, we com-
pared their sets of principal vectors {vk,1, . . . , vk,dic

} and
{vj,1, . . . , vj,dic

}. A quantitative measure of subspace
similarity is given by the principal angles between the
two subspaces. Alternatively, for small dic, the similar-
ity can be approximated by comparing corresponding
principal vectors. For instance, the alignment of the
primary direction of variation is measured by the abso-
lute dot product |vk,1 · vj,1|. A value close to 1 indicates
strong alignment, while a value close to 0 indicates or-
thogonality. We computed these measures for pairs of
corresponding principal vectors (e.g., vk,1 vs vj,1, vk,2
vs vj,2) across all pairs of initial conditions to assess the
consistency in manifold orientation.

A high average subspace similarity across all pairs of
ICs indicates that the principal directions of variation
for the latent manifolds are largely parallel, implying
that the manifolds are primarily translated versions of
each other.

2.3. Analysis Workflow
The analysis was structured in a sequence of steps to

progressively reveal the geometric structure of the latent
space (Shukla et al. 2021; Rissaki et al. 2024) and the
encoding of initial conditions:

2.3.1. Initial Exploratory Data Analysis

We began by performing global PCA on the entire
collection of latent vectors to understand the overall dis-
tribution and effective dimensionality of the combined
dataset (Ferreras et al. 2006; Nandi & Pandey 2025).
Concurrently, we performed per-IC PCA for each of
the 25 initial conditions to obtain individual centroids
and principal components, characterizing the typical in-
trinsic dimensionality and variance structure of a single
manifold (Damiano et al. 2019). Finally, PCA was ap-
plied to the set of 25 centroids to understand how the
mean positions of the manifolds are organized (Nandi &
Pandey 2025).

2.3.2. Characterization of Individual Manifolds

Based on the per-IC PCA results, we determined the
effective intrinsic dimensionality dic for the latent point
cloud of each initial condition. We approximated each
point cloud as an affine subspace defined by its centroid
Ck and the span of its first dic principal component vec-
tors Vk = [vk,1, . . . , vk,dic

] (Ferreras et al. 2006; Dami-
ano et al. 2019; Nandi & Pandey 2025). The eigenval-
ues associated with these vectors provided insight into
the extent of the manifold along each principal direction
(Ferreras et al. 2006; Nandi & Pandey 2025).

2.3.3. Comparative Analysis Across Initial Conditions

We systematically compared the characterized man-
ifolds across the 25 initial conditions. The analysis
of centroids (PCA on {Ck}) revealed the structure of
the path traced by the manifold centers as the initial
condition changes (Nandi & Pandey 2025). Subspace
similarity measures were computed for pairs of princi-
pal subspaces span(Vk) to quantify how similarly ori-
ented the manifolds are (Ferreras et al. 2006; Nandi &
Pandey 2025). By combining the information from cen-
troid locations and manifold orientations, we assessed
whether the primary effect of changing the initial condi-
tion is a simple translation, a rotation, or a more com-
plex transformation of a fundamental latent structure
(Nandi & Pandey 2025). We also specifically analyzed
the set of first principal vectors {vk,1} across all ICs us-
ing PCA to see if the dominant direction of variation
for individual manifolds exhibits a structured, possibly
low-dimensional, variation across ICs (Nandi & Pandey
2025).

2.3.4. Relation to Global Latent Space Structure

Finally, we related the local structures (individual
manifolds) to the global structure identified by the
global PCA. We projected the centered latent vectors
(Lk − Ck) for each IC k onto the dominant subspace
identified by the global PCA to see how much of the
per-IC variance is aligned with the global principal di-
rections. We also examined the alignment between the
per-IC principal subspaces span(Vk) and the global prin-
cipal subspace span(Uglob).

2.3.5. Synthesis

The findings from these analyses were synthesized to
provide a comprehensive geometric description of the
PINN’s latent space (Clemente et al. 2025,?). We de-
scribed the typical intrinsic dimensionality of the latent
representation for a single solution, the extent to which
these representations form affine manifolds, how these
manifolds are related across different initial conditions
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(e.g., by translation along a low-dimensional path, by
consistent orientation), and how these local structures
relate to the overall structure of the latent space. This
synthesis allowed us to draw conclusions about how the
PINN efficiently encodes the initial condition within its
internal representation (Cuomo et al. 2022).

3. RESULTS
The objective of this study was to investigate the geo-

metric structure of the 10-dimensional latent space gen-
erated by a PINN solving the 2D Burger’s equation, fo-
cusing on how different initial conditions are encoded
within this space. Using Principal Component Analysis
(PCA) and subspace similarity measures, we analyzed
the latent vectors corresponding to 25 distinct initial
conditions.

3.1. Global structure of the latent space
We began by analyzing the overall structure of the la-

tent space by performing PCA on the entire collection
of latent vectors generated across all spatial points, time
steps, and the 25 initial conditions. This global analysis,
as described in the Methods, treats all 101× 103× 25 =

260075 latent vectors as a single dataset in R10. The
variance explained by each principal component (PC)
provides insight into the intrinsic dimensionality and
dominant directions of variation within the aggregated
latent representation.

The results of this global PCA reveal a significant
concentration of variance in the leading principal com-
ponents. As shown in the scree plot in Figure 1, the
first principal component (PC1) alone captures 60.12%
of the total variance. The second (PC2) and third (PC3)
components capture an additional 23.44% and 12.93%,
respectively. Cumulatively, the first three global PCs
account for 96.48% of the total variance. Including the
fourth (1.30%), fifth (1.17%), and sixth (0.76%) com-
ponents brings the cumulative variance explained to
99.72%. The remaining four components individually
explain less than 0.3% of the variance each.

This strong concentration of variance within the first
six principal components demonstrates that the entire
collection of latent vectors, despite residing in a 10-
dimensional space, effectively occupies a much lower-
dimensional subspace. The vast majority (>99%) of the
variability observed in the latent representations across
all tested physical states and initial conditions is cap-
tured by a 6-dimensional linear subspace. This sug-
gests that the PINN learns an overall efficient encoding,
where the complex dynamics across different conditions
are constrained to a relatively low-dimensional manifold
within the full latent space.

Figure 1. Scree plot showing the individual and cumula-
tive explained variance from the global Principal Component
Analysis of all latent vectors. The variance is highly con-
centrated in the first three components, which capture over
96% of the variance, revealing the low-dimensional structure
of the global latent space.

3.2. Intrinsic dimensionality of per initial condition
manifolds

Next, we investigated the structure of the latent space
corresponding to individual initial conditions. For each
of the 25 initial conditions (ICk, k = 0, . . . , 24), we per-
formed PCA independently on the 101 × 103 = 10403

latent vectors {L(xi, tj , ICk)} associated with that spe-
cific condition. This analysis aims to characterize the
intrinsic dimensionality and shape of the latent point
cloud representing the PINN’s encoding of the solution
for a fixed initial state.

The results show a remarkable consistency across all
25 initial conditions. As shown by the average scree
plot in Figure 2 and the intrinsic dimensionality distri-
bution in Figure 3, for every single IC, precisely 3 prin-
cipal components were sufficient to explain over 95%
of the variance within its corresponding latent point
cloud. Quantitatively, the average cumulative variance
explained by the first three per-IC principal components
is 97.48%, with a very low standard deviation (0.15%).
The average variance explained by the first, second, and
third per-IC PCs were 59.61%, 23.72%, and 14.15%, re-
spectively. The variance captured by the fourth per-IC
PC and beyond drops sharply, with the average variance
for the fourth PC being below 2%.

These findings strongly suggest that, for any given ini-
tial condition within the tested set, the PINN’s latent
representation of the spatiotemporal solution {L(x, t)}
forms an effectively 3-dimensional structure embedded
in the 10-dimensional latent space. The high percentage
of variance captured by the leading three components in-
dicates that these structures are well-approximated by 3-
dimensional affine manifolds (shifted linear subspaces),
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Figure 2. Average explained variance by principal com-
ponents for the latent space of each initial condition, aver-
aged across 25 initial conditions. Blue bars show the av-
erage individual explained variance per component; the red
line shows the average cumulative explained variance with
standard deviation (shaded). This analysis reveals that the
latent representation for each initial condition is consistently
low-dimensional, with the first three components capturing
nearly 97.5% of the variance on average.

Figure 3. Distribution of the intrinsic dimensionality for
the latent representations of each of the 25 initial conditions
(ICs). Intrinsic dimensionality is defined as the minimum
number of principal components required to capture over
95% of the variance for each IC’s latent vectors. The plot
shows that all 25 ICs result in latent manifolds with an in-
trinsic dimensionality of 3.

exhibiting limited non-linear deviations from this linear
approximation within the scope of the tested conditions.
This implies that the network has learned a consistent,
low-dimensional basis for representing the state of the
system over space and time for a fixed initial condition.

3.3. Geometric arrangement of manifold centroids
To understand how the latent representations differ

across initial conditions, we analyzed the geometric ar-
rangement of the centroids Ck of the per-IC latent point
clouds. Each centroid Ck is a 10-dimensional vector rep-

resenting the mean position of the latent manifold for
initial condition ICk. We collected these 25 centroid
vectors and performed PCA on this (25× 10) matrix.

The results of this centroid PCA are striking, as shown
in the scree plot in Figure 4. The first principal compo-
nent of the centroids (CPC1) explains an overwhelming
99.86% of the total variance in the centroid positions.
The second component (CPC2) explains only 0.10%,
and the third (CPC3) explains 0.02%.

Figure 4. Scree plot showing the variance explained by
principal components of the initial condition (IC) centroids.
The first principal component captures over 99% of the vari-
ance, indicating that the centroids are arranged along an
effectively one-dimensional structure in the latent space.

Projecting the centroids onto their principal compo-
nents, as depicted in Figure 5 (2D projection) and Fig-
ure 6 (3D projection), reveals that they form an almost
perfectly linear arrangement in the latent space. The
centroids corresponding to initial conditions indexed 0
through 24 are ordered sequentially along this dominant,
nearly one-dimensional direction defined by CPC1.

This finding is crucial: it indicates that the primary
effect of changing the initial condition within this en-
semble is to translate the entire 3D latent manifold cor-
responding to that condition along a specific, nearly
one-dimensional path within the 10-dimensional latent
space. This suggests that the PINN encodes the differ-
ence between initial conditions predominantly as a shift
in the mean position of the learned solution manifold.

3.4. Comparison of manifold orientations
While the centroids reveal the translational differences

between the manifolds, we also investigated whether
the orientation or ”shape” of the 3D manifolds changes
across initial conditions. For each ICk, the per-IC PCA
yields a set of principal vectors {vk1, vk2, vk3} spanning
the approximate 3D affine manifold. We compared these
principal subspaces across different initial conditions.
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Figure 5. Initial condition (IC) manifold centroids pro-
jected onto their first two principal components (CPC1 and
CPC2). Each point represents the centroid for a specific IC,
labeled and colored by its index (0-24). The points form
a clear, near-linear trajectory predominantly along CPC1,
indicating that changing the IC primarily translates the cor-
responding latent manifold along a dominant direction.

Figure 6. Three-dimensional scatter plot showing the pro-
jection of the 25 per-initial condition (IC) latent manifold
centroids onto their first three principal components (CPC1,
CPC2, and CPC3). Each point represents the centroid for
a unique initial condition and is colored according to its
corresponding IC index (0 to 24). The plot demonstrates
that the centroids are arranged along a predominantly one-
dimensional path, strongly aligned with CPC1, indicating
that the primary effect of varying the initial condition is to
translate the latent manifold along a specific direction.

We quantified the similarity between the 3-
dimensional principal subspaces spanned by
{vk1, vk2, vk3} for pairs of initial conditions (ICk, ICl)
using subspace similarity measures based on principal
angles. The results, shown in the heatmap in Figure
7, indicate that the average subspace similarity score
across all pairs of initial conditions was exceptionally
high, measuring 0.986, with a standard deviation of only
0.014. The minimum observed similarity was 0.954. A
similarity score close to 1 indicates that the two sub-
spaces are nearly parallel.

Figure 7. Subspace similarity between 3D latent manifolds
for different initial conditions. The heatmap shows the aver-
age squared cosine of the principal angles between the sub-
spaces spanned by the top three principal components for
each pair of initial conditions (ICk and ICl). High values
(bright yellow) indicate strong alignment. The consistently
high similarity across all pairs demonstrates that the 3D la-
tent manifolds associated with different initial conditions are
highly parallel.

To further understand the subtle variations in orien-
tation, we performed PCA separately on the set of first
principal vectors {vk1}24k=0, the set of second principal
vectors {vk2}24k=0, and the set of third principal vectors
{vk3}24k=0 across all initial conditions. As shown in Fig-
ure 8 (dot product heatmaps) and Figure 9 (PCA of
principal vectors), for the set of first principal vectors
{vk1}, the first PC explained 85.45% of their variance.
For {vk2}, the first PC explained 80.04%. Most notably,
for {vk3}, the first PC explained 97.67% of the variance.
This indicates that the variations in the orientations of
the principal axes of the 3D manifolds are themselves
highly structured and change in a low-dimensional man-
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ner, effectively tracing out nearly one-dimensional paths
in the space of orientation vectors as the initial condition
index changes.

Figure 8. Heatmaps show the absolute dot product between
corresponding principal vectors (PC1, PC2, PC3) from per-
initial condition PCA for all pairs of initial conditions. High
values (yellow) indicate strong alignment. The plots demon-
strate substantial alignment across initial conditions, partic-
ularly for PC3, indicating that the 3D latent manifolds for
different initial conditions are largely parallel.

Figure 9. Principal Component Analysis (PCA) of the sets
of per-initial condition (IC) principal vectors. Top row shows
scree plots for the collection of first (vk1), second (vk2), and
third (vk3) per-IC principal vectors across all 25 ICs, indi-
cating high variance capture by the first component in each
set. Bottom row shows the 2D projection of these vector sets
onto their respective first two principal components, colored
by IC index, revealing a structured, low-dimensional varia-
tion in the orientation of the 3D per-IC manifolds.

In summary, the 3D latent manifolds are not only
translated versions of each other but also exhibit a very
high degree of parallelism. The minor deviations in their
orientations are systematic and follow a simple, low-
dimensional pattern correlated with the initial condition
index.

3.5. Relationship between per initial condition
structures and global structure

Finally, we related the geometrically characterized
per-IC manifolds to the overall structure of the global
latent space. The global PCA identified a 6-dimensional
subspace capturing 99.72% of the total variance (Figure
1). We projected the centered latent vectors (Lk − Ck)

for each initial condition k onto this 6D global principal
subspace. As shown in Figure 10, on average, 99.66%
of each individual IC’s intrinsic variance (the variance
within its 3D manifold) was captured by this 6D global
subspace, with a minimum capture of 99.24%. This con-
firms that the individual 3D manifolds are almost en-
tirely embedded within the common, higher-dimensional
subspace occupied by the entire dataset.

Figure 10. Percentage of the intrinsic variance for each
initial condition (IC) latent manifold captured by the 6-
dimensional global principal subspace. The consistently high
values demonstrate that the individual 3D manifolds are ef-
fectively embedded within this common global subspace.

Furthermore, we projected the per-IC centroids Ck

onto the global principal components. This analysis, vi-
sualized in Figure 11 (2D projection) and Figure 12 (3D
projection), showed that the trajectory of the centroids
aligns strongly with the first global principal component
(Global PC1). The initial condition index (0-24) maps
almost linearly to the position along Global PC1. This
demonstrates that the dominant mode of variation in
the entire latent space (Global PC1) is directly asso-
ciated with the primary way the initial conditions are
encoded – as translations of the latent manifold along
this direction.

These results highlight a hierarchical structure: a
global 6D subspace accommodates all learned represen-
tations. Within this subspace, each specific initial condi-
tion selects a 3D affine manifold whose position is deter-
mined by a translation along a nearly 1D path strongly
aligned with the global PC1. The orientation of this
3D manifold is remarkably consistent across ICs, with
subtle, structured, low-dimensional variations.

3.6. Synthesis and interpretation
The collective findings from our geometric analysis

provide a clear and compelling picture of how the PINN
structures its latent space to represent solutions of the
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Figure 11. Projection of per-initial condition latent mani-
fold centroids onto the first two global principal components.
Each point, labeled and colored by initial condition index,
reveals a near-linear arrangement predominantly along the
first global component. This indicates that the PINN en-
codes variations due to initial conditions primarily by trans-
lating the corresponding latent manifolds along a structured,
low-dimensional trajectory within the global latent space.

Figure 12. Centroids of the 25 per-initial condition (IC)
latent manifolds projected onto the first three global princi-
pal components (PCs). Points are colored by IC index (0-
24). The centroids form a near-linear path, primarily along
Global PC1, indicating that different initial conditions pri-
marily translate the latent manifolds along this dominant
direction in the global latent space.

2D Burger’s equation across varying initial conditions.
The latent space is not a complex, entangled high-
dimensional mess but rather exhibits a highly organized
geometric structure.

For a given initial condition, the network learns a rep-
resentation that effectively lies on a 3-dimensional affine
manifold within the 10-dimensional latent space. This
intrinsic dimensionality is strikingly consistent across all
25 tested initial conditions, as shown in Figure 3. The
primary effect of changing the initial condition is not to
drastically alter the structure or dimensionality of this
manifold, but rather to translate it within the latent
space. These translations occur along a well-defined,
nearly one-dimensional path (Figures 5, 6), which is it-
self strongly aligned with the dominant direction of vari-
ation in the overall latent space (Figures 11, 12). More-
over, the orientation of these 3D manifolds is remarkably
similar across different initial conditions, indicating they
are nearly parallel (Figure 7). The subtle variations in
their orientation are not random but follow a structured,
low-dimensional pattern related to the initial condition
(Figure 9).

This suggests that the PINN has learned a form of
disentangled representation. The network appears to
separate the influence of the initial condition from the
intrinsic spatiotemporal evolution of the solution. The
intrinsic dynamics for a fixed initial condition are en-
coded within the 3D structure of the manifold, while
the specific initial condition primarily acts as a parame-
ter that translates this fundamental 3D structure in the
latent space. This organization is highly efficient; in-
stead of learning 25 distinct, unrelated high-dimensional
structures, the network leverages a common 3D ”tem-
plate” and uses a simple, low-dimensional transforma-
tion (translation and minor orientation adjustment) to
adapt it for different initial conditions. This geometric
simplicity in the latent space provides valuable insights
into the network’s internal encoding mechanisms, sug-
gesting that the PINN captures the essential physics in
a structured and interpretable manner, at least within
this learned latent representation.

3.7. Limitations and future directions
While the findings reveal a surprisingly simple and

structured latent space geometry, it is important to con-
sider potential limitations and avenues for future re-
search. Our analysis heavily relies on PCA, which is
a linear technique. Although the high variance cap-
ture suggests that affine manifolds are good approxima-
tions, non-linear manifold learning techniques could po-
tentially uncover finer, non-linear structures within the
3D manifolds or in the arrangement of centroids and ori-
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entations. The study was conducted for a fixed viscos-
ity parameter; exploring how the latent space structure
changes with varying viscosity would be a crucial ex-
tension, providing insights into how the PINN encodes
physical parameters beyond initial conditions. A larger
and more diverse set of initial conditions could further
validate the observed low-dimensional nature of the cen-
troid path and orientation variations, potentially reveal-
ing more complex patterns if the range of initial condi-
tions were significantly expanded. Furthermore, corre-
lating the specific characteristics of the initial conditions
(e.g., amplitude, frequency content) with their positions
along the centroid trajectory and their manifold orien-
tations would provide deeper physical meaning to the
learned latent structure. Finally, investigating whether
similar structured latent spaces are learned by PINNs
for other types of PDEs or with different network ar-
chitectures is essential to assess the generalizability of
these findings.

4. CONCLUSIONS
This study investigated the geometric structure of

the 10-dimensional latent space generated by a Physics-
Informed Neural Network (PINN) trained to solve the
2D Burger’s equation across a set of 25 distinct initial
conditions. Our goal was to understand how the PINN
encodes the physical state of the system and how vari-
ations in the initial condition are reflected in the net-
work’s internal representation. We hypothesized that
the latent space might exhibit a structured, potentially
low-dimensional, organization related to the problem
parameters.

To address this, we employed Principal Component
Analysis (PCA) and subspace similarity measures to an-
alyze the collections of latent vectors. We performed
PCA on the entire dataset of latent vectors (global
PCA), on the latent vectors for each individual initial
condition (per-IC PCA), and on the centroids of the
per-IC latent point clouds. Subspace similarity was used
to compare the orientations of the principal subspaces
identified by the per-IC PCA. The dataset comprised 10-
dimensional latent vectors extracted from a pre-trained
PINN solution for 25 initial conditions, sampled over a
spatial and temporal grid.

Our analysis yielded several key findings regarding the
geometric organization of the latent space. Globally,
the latent vectors across all initial conditions occupy an
effectively 6-dimensional subspace, capturing over 99%
of the total variance, indicating an overall efficient rep-
resentation. More specifically, for each individual ini-
tial condition, the set of latent vectors forms a distinct,

approximately 3-dimensional affine manifold embedded
within the 10-dimensional space. This intrinsic dimen-
sionality and the distribution of variance along the prin-
cipal components were remarkably consistent across all
25 initial conditions. Crucially, the primary effect of
changing the initial condition is encoded as a transla-
tion of this consistent 3D manifold within the latent
space. The centroids of these manifolds trace a nearly
one-dimensional path, strongly aligned with the dom-
inant global principal component, as the initial condi-
tion changes. Furthermore, the 3D manifolds for dif-
ferent initial conditions are remarkably parallel to each
other, exhibiting an average subspace similarity exceed-
ing 0.98, with only subtle, low-dimensional variations in
their orientation.

From these results, we learned that the PINN devel-
ops a highly structured and geometrically simple rep-
resentation of the Burger’s equation solutions. Instead
of learning entirely distinct high-dimensional represen-
tations for each initial condition, the network appears
to learn a fundamental, low-dimensional (3D) structure
representing the spatiotemporal evolution of the system
for a fixed initial state. The specific initial condition
then acts primarily as a parameter that translates this
base structure along a specific direction in the latent
space. This suggests a form of disentangled representa-
tion, where the network separates the influence of the
initial condition (encoded as a translation) from the in-
trinsic dynamics (encoded within the 3D manifold struc-
ture). This geometric organization is highly efficient and
offers valuable insights into the network’s internal en-
coding mechanisms, suggesting that the PINN captures
the essential physics in a structured and potentially in-
terpretable manner within this latent space.

While our findings reveal a compelling geometric
structure, it is important to acknowledge the limita-
tions of relying primarily on linear techniques like PCA,
which might miss finer non-linear structures. Future
work could explore non-linear manifold learning tech-
niques to further probe the geometry. Expanding the
study to include variations in physical parameters, such
as viscosity, and analyzing a larger, more diverse set of
initial conditions would be crucial to assess the general-
izability of these findings and potentially uncover more
complex organizational principles. Correlating specific
properties of the initial conditions with the latent space
features (centroid position, manifold orientation) would
provide deeper physical meaning. Finally, investigating
whether similar structured latent spaces are learned by
PINNs for other types of PDEs and with different net-
work architectures is essential to determine the broader
applicability of these observed geometric principles.
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